Détail de l'auteur
Auteur Jin Chen |
Documents disponibles écrits par cet auteur (5)



Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency / Jiaqi Tian in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
![]()
[article]
Titre : Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency Type de document : Article/Communication Auteurs : Jiaqi Tian, Auteur ; Xiaolin Zhu, Auteur ; Jin Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] filtrage du bruit
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] lissage de données
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] série temporelleRésumé : (auteur) Vegetation phenology can be extracted from vegetation index (VI) time series of satellite data. The maximum value composite (MVC) procedure and smoothing filters have been conventionally used as standard methods to exclude noises in the VI time series before extracting the vegetation phenology [e.g., National Aeronautics and Space Administration (NASA) VNP22Q2 and United States Geological Survey (USGS) MCD12Q2 phenology products]. However, it is unclear how to optimize the MVC and smoothing filters to produce the most accurate phenology metrics given that cloud frequency varies spatially. This study designed two simulation experiments, namely (1) using only the MVC and (2) using the MVC and smoothing filters together to smooth the enhanced vegetation index (EVI) time series for detecting spring phenology, i.e., start of season (SOS), over the northern hemisphere (north of 30°N) on a 5° × 5° grid cell basis by the inflection point and relative threshold algorithms. The results revealed that (1) the inappropriate selection of MVC periods (e.g., too short or too long) affected the accuracy of the SOS extracted by both phenology detection algorithms; (2) a filtering process with optimal parameters can reduce the effects of the MVC period on SOS extraction to a considerable extent, i.e., 65% and 61% for iterative Savitzky–Golay (SG) and penalized cubic splines (SP) filters, respectively; (3) optimal parameters for both the MVC and smoothing filters showed significant spatial heterogeneity; and (4) validation with ground PhenoCam data indicated that optimal parameters of the MVC and smoothing filters can produce more accurate results than official vegetation phenology products that use uniform parameters. Specifically, the R2 values of the NASA product and the USGS product were 0.58 and 0.67, which were increased to 0.70 and 0.81, respectively, by the optimal smoothing process. Optimal parameters of the MVC and smoothing filters provided by this study in each 5° × 5° sub-region may help future studies to improve the accuracy of phenology detection from satellite VI time series. Numéro de notice : A2021-653 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.003 Date de publication en ligne : 14/08/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98383
in ISPRS Journal of photogrammetry and remote sensing > vol 180 (October 2021) . - pp 29 - 44[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021101 SL Revue Centre de documentation Revues en salle Disponible 081-2021103 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner / Kai Tan in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner Type de document : Article/Communication Auteurs : Kai Tan, Auteur ; Jin Chen, Auteur ; Weiguo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 129 - 139 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données TLS (télémétrie)
[Termes IGN] humidité du sol
[Termes IGN] littoral
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] teneur en vapeur d'eau
[Termes IGN] vaseRésumé : (Auteur) Estimations of the soil surface water contents and distributions play a key role in the ecological, environmental, and topographical investigations for intertidal mudflats. However, existing techniques have limitations. Long-range terrestrial laser scanners (TLSs) can record the co-located intensity value which refers to a measure of the backscattered laser from each scanned point. Most long-range TLSs emit near-infrared lasers that can be strongly absorbed by water. Thus, the intensity values can be used as proxies for water contents. In this study, the intensity data of long-range TLSs are corrected for the incidence angle and distance effects to quantitatively estimate the soil surface water contents of intertidal mudflats. A case study for a mudflat in Chongming Island, Shanghai, China, is conducted. Results indicate that compared with traditional techniques, the corrected intensity data of long-range TLSs are extremely effective data sources for a quick, accurate, and detailed estimation of water contents for large-area mudflats. The estimation root mean square error is approximately 3%. Furthermore, the 3D distributions of the water contents can be accurately mapped by combining the point cloud of the mudflats to potentially analyze the intrinsic association among water contents and topography, vegetation coverage, and habitation of creatures in mudflats. Numéro de notice : A2020-013 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.isprsjprs.2019.11.003 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94402
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 129 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A simple method for detecting phenological change from time series of vegetation index / Jin Chen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
![]()
[article]
Titre : A simple method for detecting phenological change from time series of vegetation index Type de document : Article/Communication Auteurs : Jin Chen, Auteur ; Yuhan Rao, Auteur ; Miaogen Shen, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 3436 - 3449 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] Enhanced vegetation index
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] phénologie
[Termes IGN] série temporelleRésumé : (Auteur) Remote sensing is a valuable way to retrieve spatially continuous information on vegetation phenological changes, which are widely used as an indicator of climate change. We propose a simple method called weighted cross-correlogram spectral matching-phenology (CCSM-P), which combines CCSM and a weighted correlation system, for detecting vegetation phenological changes by using multiyear vegetation index (VI) time series. In experiments with simulated enhanced VI (EVI) for various scenarios, CCSM-P exhibited high accuracy and robustness to noise and the potential to capture long-term phenological change trends. For a temperate grassland in northern China, CCSM-P retrieved more reasonable vegetation spring phenology from Moderate Resolution Imaging Spectroradiometer (MODIS) EVI images than the MODIS phenology product (MCD12Q2). When validated against field phenological observations in five of the AmeriFlux Network sites in the U.S. (four deciduous broadleaf forest sites and a closed shrublands site), and a cropland site in China, CCSM-P exhibited mean absolute differences (MADs) ranging from 2 to 10 days (median: 4.2 days), whereas MAD of non-CCSM methods showed larger variations, ranging from 5 to 58 days (median: 21.3 days). This is because CCSM-P integrates field phenological observations. Compared with non-CCSM methods, which are widely used to identify phenological events, CCSM-P is more accurate and less dependent on prior knowledge (thresholds or predefined functions), which indicates its effectiveness and applicability for detecting year-to-year variations and long-term change trends in phenology, and should facilitate more reliable assessments of phenological changes in climate change studies. Numéro de notice : A2016-854 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2518167 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2518167 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82992
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 6 (June 2016) . - pp 3436 - 3449[article]An iterative haze optimized transformation for automatic cloud/haze detection of landsat imagery / Shuli Chen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
![]()
[article]
Titre : An iterative haze optimized transformation for automatic cloud/haze detection of landsat imagery Type de document : Article/Communication Auteurs : Shuli Chen, Auteur ; Xuehong Chen, Auteur ; Jin Chen, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 2682 - 2694 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classification floue
[Termes IGN] détection de flou
[Termes IGN] télédétectionRésumé : (Auteur) Most previous haze/cloud detection methods for Landsat imagery, e.g., haze optimized transformation (HOT), cannot adequately suppress land surface information and, in particular, often overestimate haze thickness over bright surfaces. This paper proposes an iterative HOT (IHOT) for improving haze detection with the help of a corresponding clear image. With an iterative procedure of regressions among HOT, the reflectance difference at the top of atmosphere (TOA) between hazy and clear images, and TOA reflectances of hazy and clear images, the land surface information can be removed, and the iterative HOT (IHOT) result is derived to spatially characterize the haze contamination in the Landsat images. A group of Landsat images that were acquired in different landscapes and seasons were used to test IHOT. Visual comparisons indicate that IHOT performed better than previous haze detection methods for images that were acquired in diverse landscapes and also performed robustly for hazy images that were acquired at different seasons when using the same reference clear image. Additionally, two indirect quantitative validations were used to illustrate that IHOT can provide the best transformation for accurately determining haze information. Therefore, it is expected that the proposed IHOT method will be used for automatic cloud/haze detection for large numbers of Landsat images if data sets of clear Landsat imagery are available. Numéro de notice : A2016-845 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2504369 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2504369 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82926
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 5 (May 2016) . - pp 2682 - 2694[article]Restoration of information obscured by mountainous shadows through Landsat TM/ETM+ images without the use of DEM data : A new method / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
![]()
[article]
Titre : Restoration of information obscured by mountainous shadows through Landsat TM/ETM+ images without the use of DEM data : A new method Type de document : Article/Communication Auteurs : Yuan Zhou, Auteur ; Jin Chen, Auteur ; Qinghua Guo, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 313 - 328 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] montagne
[Termes IGN] ombre
[Termes IGN] pixel
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] restauration d'image
[Termes IGN] valeur radiométriqueRésumé : (Auteur) Shadows in remotely sensed imagery occur when objects totally or partially occlude direct light from a source of illumination, generating great difficulty in land cover interpretation and classification because of the loss of spectral information of shaded pixels. In a mountainous environment with rough terrain, shadows are especially pronounced due to the differentiation of direct illumination between sunny and shady slopes. Topographic correction methods, which are widely used to adjust for differences in solar incidence angles, can partly alleviate the impacts of shadows. However, there are two limitations: one is that the contemporary topographic corrections have little effect on areas that have very low incidence angles and areas that are completely without direct solar illumination (cast shadow); another is that their effectiveness is restricted by the data quality and completeness, spatial resolution, and elevation accuracy of the Digital Elevation Model (DEM) data, which is not currently available in all parts of the world. Thus, noise and errors may be introduced in topographic correction during resampling and geometric registration of the target image. This paper proposes a new approach to restore the radiometric information of mountainous cast shadows using a spectral processing technique called “continuum removal” (CR) without the aid of DEM. The CR-based approach makes full use of the spectral information derived from both the shaded pixels and their neighboring nonshaded pixels of the same land cover type. Several Landsat TM images were used to assess the performance of the proposed method. Results indicated that the proposed method can effectively restore the spectral values of shaded pixels more accurately than the ATCOR_3 correction method, especially for very low incidence angle areas and cast shadows. By comparing data values of shaded pixels with nonshaded pixels (pure reference pixels) of their same class, images processed by the proposed method had the lowest average root mean square error (RMSE) between them in visible, NIR and SWIR bands, followed by the ATCOR_3 correction method and the original image. In addition, the proposed method achieved the best classification accuracy, higher than those from the original test image and the ATCOR_3 corrected image generated using 90 m or 30 m spatial resolution DEM. Therefore, the Continuum Removal method is a better alternative for restoring objects obscured by mountainous shadow when adequate DEM data are unavailable and the quality of DEM cannot satisfy the requirements of topographic correction algorithms. Numéro de notice : A2014-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2239651 En ligne : https://doi.org/10.1109/TGRS.2013.2239651 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32942
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 313 - 328[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve 3L Disponible