Détail de l'auteur
Auteur Mathis Blossfeld |
Documents disponibles écrits par cet auteur (7)



Titre : GENESIS: Co-location of Geodetic Techniques in Space Type de document : Article/Communication Auteurs : Pacôme Delva, Auteur ; Zuheir Altamimi , Auteur ; Alejandro Blazquez, Auteur ; Mathis Blossfeld, Auteur ; Johannes Böhm
, Auteur ; Pascal Bonnefond, Auteur ; et al., Auteur ; Laurent Métivier
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : 1-Pas de projet / Note générale : bibliographie
auteurs : Pacome Delva, Zuheir Altamimi, Alejandro Blazquez, Mathis Blossfeld, Johannes Böhm, Pascal Bonnefond, Jean-Paul Boy, Sean Bruinsma, Grzegorz Bury, Miltiadis Chatzinikos, Alexandre Couhert, Clement Courde, Rolf Dach, Veronique Dehant, Simone Dell’Agnello, Gunnar Elgered, Werner Enderle, Pierre Exertier, Susanne Glaser, Rudiger Haas, Wen Huang, Urs Hugentobler17, Adrian J¨aggi11, Ozgur Karatekin12, Frank G. Lemoine18, Christophe Le Poncin-Lafitte, Susanne Lunz, Benjamin Mannel, Flavien Mercier, Laurent Metivier, Benoıt Meyssignac, Jurgen Muller, Axel Nothnage, Felix Perosanz, Roelof Rietbroek, Markus Rothacher, Hakan Sert, Krzysztof Sosnica, Paride Testani, Javier Ventura-Traveset, Gilles
Wautelet, and Radoslaw ZajdeLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] co-positionnement
[Termes IGN] état de l'art
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] mission spatiale
[Termes IGN] station de mesureRésumé : (auteur) Improving and homogenizing time and space reference systems on Earth and, more directly, realizing the Terrestrial Reference Frame (TRF) with an accuracy of 1mm and a long-term stability of 0.1mm/year are relevant for many scientific and societal endeavors. The knowledge of the TRF is fundamental for Earth and navigation sciences. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the positions of continental and island reference stations, as well as the ground stations of tracking networks. Also, numerous applications in geophysics require absolute millimeter precision from the reference frame, as for example monitoring tectonic motion or crustal deformation for predicting natural hazards. The TRF accuracy to be achieved represents the consensus of various authorities which has enunciated geodesy requirements for Earth sciences.
Today we are still far from these ambitious accuracy and stability goals for the realization of the TRF. However, a combination and co-location of all four space geodetic techniques on one satellite platform can significantly contribute to achieving these goals. This is the purpose of the GENESIS mission, proposed as a component of the FutureNAV program of the European Space Agency. The GENESIS platform will be a dynamic space geodetic observatory carrying all the geodetic instruments referenced to one another through carefully calibrated space ties. The co-location of the techniques in space will solve the inconsistencies and biases between the different geodetic techniques in order to reach the TRF accuracy and stability goals endorsed by the various international authorities and the scientific community. The purpose of this white paper is to review the state-of-the-art and explain the benefits of the GENESIS mission in Earth sciences, navigation sciences and metrology.Numéro de notice : P2022-007 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2209.15298 Date de publication en ligne : 30/09/2022 En ligne : https://doi.org/10.48550/arXiv.2209.15298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101792 Benefits of non-tidal loading applied at distinct levels in VLBI analysis / Matthias Glomsda in Journal of geodesy, vol 94 n° 9 (September 2020)
![]()
[article]
Titre : Benefits of non-tidal loading applied at distinct levels in VLBI analysis Type de document : Article/Communication Auteurs : Matthias Glomsda, Auteur ; Mathis Blossfeld, Auteur ; Manuela Seitz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] données ITGB
[Termes IGN] effet de charge
[Termes IGN] interférométrie à très grande base
[Termes IGN] pesanteur hors marée
[Termes IGN] retard troposphérique
[Termes IGN] série temporelle
[Termes IGN] surcharge hydrologique
[Termes IGN] surcharge océanique
[Termes IGN] transformation de HelmertRésumé : (auteur) In the analysis of very long baseline interferometry (VLBI) observations, many geophysical models are used for correcting the theoretical signal delay. In addition to the conventional models described by Petit and Luzum (eds) (IERS Conventions, 2010), we are applying different parts of non-tidal site loading, namely the atmospheric, oceanic, and hydrological ones. To investigate their individual contributions, these parts are considered both separately and combined to a total loading. The application of the corresponding site displacements is performed at two distinct levels of the geodetic parameter estimation process (observation and normal equation level), which turn out to give very similar results in many cases. To validate our findings internally, the site displacements are provided by two different data centres: the Earth-System-Modelling group at the Deutsches GeoForschungsZentrum in Potsdam (ESMGFZ, see Dill and Dobslaw, J Geophys Res Solid Earth, 2013. https://doi.org/10.1002/jgrb.50353ISTEX)] and the International Mass Loading Service [IMLS, see Petrov (The international mass loading service, 2015)]. We show that considering non-tidal loading is actually useful for mitigating systematic effects in the VLBI results, like annual signals in the station height time series. If the sum of all non-tidal loading parts is considered, the WRMS of the station heights and baseline lengths is reduced in 80–90% of all cases, and the relative improvement is about −3.5% on average. The main differences between our chosen providers originate from hydrological loading. Numéro de notice : A2020-540 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01418-z Date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01418-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95741
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 90[article]Consistent realization of celestial and terrestrial reference frames / Younghee Kwak in Journal of geodesy, vol 92 n° 9 (September 2018)
![]()
[article]
Titre : Consistent realization of celestial and terrestrial reference frames Type de document : Article/Communication Auteurs : Younghee Kwak, Auteur ; Mathis Blossfeld, Auteur ; Ralf Schmid, Auteur ; Detlef Angermann, Auteur ; Michael Gerstl, Auteur ; Manuela Seitz, Auteur Année de publication : 2018 Article en page(s) : pp 1047 - 1061 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] cohérence des données
[Termes IGN] erreur systématique inter-systèmes
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] paramètres d'orientation de la Terre
[Termes IGN] point de liaison (géodésie)
[Termes IGN] système de référence célesteRésumé : (Auteur) The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of ΔUT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques. Numéro de notice : A2018-458 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1130-6 Date de publication en ligne : 12/03/2018 En ligne : https://doi.org/10.1007/s00190-018-1130-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91055
in Journal of geodesy > vol 92 n° 9 (September 2018) . - pp 1047 - 1061[article]Future global SLR network evolution and its impact on the terrestrial reference frame / Alexander Kehm in Journal of geodesy, vol 92 n° 6 (June 2018)
![]()
[article]
Titre : Future global SLR network evolution and its impact on the terrestrial reference frame Type de document : Article/Communication Auteurs : Alexander Kehm, Auteur ; Mathis Blossfeld, Auteur ; Erricos C. Pavlis, Auteur ; Florian Seitz, Auteur Année de publication : 2018 Article en page(s) : pp 625 – 635 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] données TLS (télémétrie)
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] paramètres d'orientation de la Terre
[Termes IGN] télémétrie laser sur satelliteRésumé : (Auteur) Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects. Numéro de notice : A2018-152 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1083-1 Date de publication en ligne : 09/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1083-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89765
in Journal of geodesy > vol 92 n° 6 (June 2018) . - pp 625 – 635[article]Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) / Benjamin Männel (2018)
![]()
Titre : Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) Type de document : Article/Communication Auteurs : Benjamin Männel, Auteur ; Daniela Thaller, Auteur ; Markus Rothacher, Auteur ; Johannes Böhm , Auteur ; Jurgen Müller, Auteur ; Susanne Glaser, Auteur ; Rolf Dach, Auteur ; Richard Biancale, Auteur ; Mathis Blossfeld, Auteur ; Alexander Kehm, Auteur ; Iván Herrera Pinzón, Auteur ; Franz Hofmann, Auteur ; Florian Andritsch, Auteur ; David Coulot
, Auteur ; Arnaud Pollet
, Auteur
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2018 Collection : International Association of Geodesy Symposia, ISSN 0939-9585 num. 149 Conférence : IAG 2017, joint IAG scientific assembly and IASPEI scientific assembly 30/07/2017 04/08/2017 Kobe Japon Proceedings Springer Importance : pp 161 - 164 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Global Geodetic Observing SystemRésumé : (auteur) The Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO) was established by the Bureau of Networks and Observations of the Global Geodetic Observing System (GGOS) in order to support – by prior performance analysis – activities to reach the GGOS requirements for the accuracy and stability of the terrestrial reference frame. Based on available data sets and simulated observations for further stations and satellite missions the committee studies the impact of technique-specific improvements, new stations, and additional co-locations in space on reference frame products. Simulation studies carried out so far show the importance of the individual station performance and additional stations for satellite laser ranging, the perspectives for lunar laser ranging assuming additional stations and reflectors, and the significant impact of the new VGOS antennas. Significant progress is achieved in processing VLBI satellite tracking data. New insights in technique-specific error sources were derived based on real data from short baselines. Regarding co-location in space PLATO members confirmed that E-GRASP could fulfill the GGOS requirements with reaching a geocenter and scale accuracy and stability of 1 mm and 0.1 mm/year, respectively. Numéro de notice : C2017-063 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/1345_2018_30 Date de publication en ligne : 11/04/2018 En ligne : http://dx.doi.org/10.1007/1345_2018_30 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90562 Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations / F. Göttl in Journal of geodesy, vol 89 n° 4 (April 2015)
PermalinkNon-linear station motions in epoch and multi-year reference frames / Mathis Blossfeld in Journal of geodesy, vol 88 n° 1 (January 2014)
Permalink