Détail de l'auteur
Auteur Zongben Xu |
Documents disponibles écrits par cet auteur



Spatial and spectral image fusion using sparse matrix factorization / Bo Huang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 3 (March 2014)
![]()
[article]
Titre : Spatial and spectral image fusion using sparse matrix factorization Type de document : Article/Communication Auteurs : Bo Huang, Auteur ; Huihui Song, Auteur ; Hengbin Cui, Auteur ; Jigen Peng, Auteur ; Zongben Xu, Auteur Année de publication : 2014 Article en page(s) : pp 1693 - 1704 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse combinatoire (maths)
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] factorisation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Landsat-ETM+
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] matrice creuse
[Termes descripteurs IGN] pouvoir de résolution géométrique
[Termes descripteurs IGN] pouvoir de résolution spectraleRésumé : (Auteur) In this paper, we present a novel spatial and spectral fusion model (SASFM) that uses sparse matrix factorization to fuse remote sensing imagery with different spatial and spectral properties. By combining the spectral information from sensors with low spatial resolution (LSaR) but high spectral resolution (HSeR) (hereafter called HSeR sensors), with the spatial information from sensors with high spatial resolution (HSaR) but low spectral resolution (LSeR) (hereafter called HSaR sensors), the SASFM can generate synthetic remote sensing data with both HSaR and HSeR. Given two reasonable assumptions, the proposed model can integrate the LSaR and HSaR data via two stages. In the first stage, the model learns from the LSaR data a spectral dictionary containing pure signatures, and in the second stage, the desired HSaR and HSeR data are predicted using the learned spectral dictionary and the known HSaR data. The SASFM is tested with both simulated data and actual Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) acquisitions, and it is also compared to other representative algorithms. The experimental results demonstrate that the SASFM outperforms other algorithms in generating fused imagery with both the well-preserved spectral properties of MODIS and the spatial properties of ETM+. Generated imagery with simultaneous HSaR and HSeR opens new avenues for applications of MODIS and ETM+. Numéro de notice : A2014-115 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2253612 En ligne : https://doi.org/10.1109/TGRS.2013.2253612 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33020
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 3 (March 2014) . - pp 1693 - 1704[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014031 RAB Revue Centre de documentation En réserve 3L Disponible