Détail de l'auteur
Auteur Peter J.G. Teunissen |
Documents disponibles écrits par cet auteur



On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases / Amir Khodabandeh in Journal of geodesy, vol 92 n° 6 (June 2018)
![]()
[article]
Titre : On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases Type de document : Article/Communication Auteurs : Amir Khodabandeh, Auteur ; Peter J.G. Teunissen, Auteur Année de publication : 2018 Article en page(s) : pp 637 – 658 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes descripteurs IGN] ambiguïté entière
[Termes descripteurs IGN] correction ionosphérique
[Termes descripteurs IGN] double différence
[Termes descripteurs IGN] erreur instrumentale
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] résolution d'ambiguïtéRésumé : (Auteur) Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples. Numéro de notice : A2018-150 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1084-0 date de publication en ligne : 14/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1084-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89761
in Journal of geodesy > vol 92 n° 6 (June 2018) . - pp 637 – 658[article]Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers / Baocheng Zhang in Journal of geodesy, vol 92 n° 4 (April 2018)
![]()
[article]
Titre : Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Peter J.G. Teunissen, Auteur ; Yunbin Yuan, Auteur ; Hongxing Zhang, Auteur ; Min Li, Auteur Année de publication : 2018 Article en page(s) : pp 401 - 413 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] propagation ionosphérique
[Termes descripteurs IGN] récepteur GNSS
[Termes descripteurs IGN] récepteur monofréquence
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] teneur verticale totale en électronsRésumé : (Auteur) Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe. Numéro de notice : A2018-062 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1071-5 date de publication en ligne : 05/10/2017 En ligne : https://doi.org/10.1007/s00190-017-1071-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89398
in Journal of geodesy > vol 92 n° 4 (April 2018) . - pp 401 - 413[article]On the short-term temporal variations of GNSS receiver differential phase biases / Baocheng Zhang in Journal of geodesy, vol 91 n° 5 (May 2017)
![]()
[article]
Titre : On the short-term temporal variations of GNSS receiver differential phase biases Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Peter J.G. Teunissen, Auteur ; Yunbin Yuan, Auteur Année de publication : 2017 Article en page(s) : pp 563 – 572 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] erreur de phase
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] positionnement différentiel
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] teneur totale en électrons
[Termes descripteurs IGN] trajet multiple
[Termes descripteurs IGN] variation temporelleRésumé : (auteur) As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath. Numéro de notice : A2017-228 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1007/s00190-016-0983-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85109
in Journal of geodesy > vol 91 n° 5 (May 2017) . - pp 563 – 572[article]GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application / Dennis Odijk in GPS solutions, vol 21 n° 2 (April 2017)
![]()
[article]
Titre : GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application Type de document : Article/Communication Auteurs : Dennis Odijk, Auteur ; Nandakumaran Nadarajah, Auteur ; Safoora Zaminpardaz, Auteur ; Peter J.G. Teunissen, Auteur Année de publication : 2017 Article en page(s) : pp 439 – 450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] base géodésique
[Termes descripteurs IGN] constellation GNSS
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] erreur systématique inter-systèmes
[Termes descripteurs IGN] positionnement cinématique en temps réel
[Termes descripteurs IGN] positionnement différentiel
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] résolution d'ambiguïtéRésumé : (auteur) Knowledge of inter-system biases (ISBs) is essential to combine observations of multiple global and regional navigation satellite systems (GNSS/RNSS) in an optimal way. Earlier studies based on GPS, Galileo, BDS and QZSS have demonstrated that the performance of multi-GNSS real-time kinematic positioning is improved when the differential ISBs (DISBs) corresponding to signals of different constellations but transmitted at identical frequencies can be calibrated, such that only one common pivot satellite is sufficient for inter-system ambiguity resolution at that particular frequency. Recently, many new GNSS satellites have been launched. At the beginning of 2016, there were 12 Galileo IOV/FOC satellites and 12 GPS Block IIF satellites in orbit, while the Indian Regional Navigation Satellite System (IRNSS) had five satellites launched of which four are operational. More launches are scheduled for the coming years. As a continuation of the earlier studies, we analyze the magnitude and stability of the DISBs corresponding to these new satellites. For IRNSS this article presents for the first time DISBs with respect to the L5/E5a signals of GPS, Galileo and QZSS for a mixed-receiver baseline. It is furthermore demonstrated that single-frequency (L5/E5a) ambiguity resolution is tremendously improved when the multi-GNSS observations are all differenced with respect to a common pivot satellite, compared to classical differencing for which a pivot satellite is selected for each constellation. Numéro de notice : A2017-214 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article En ligne : http://dx.doi.org/10.1007/s10291-016-0536-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85084
in GPS solutions > vol 21 n° 2 (April 2017) . - pp 439 – 450[article]
Titre : Springer handbook of Global Navigation Satellite Systems Type de document : Guide/Manuel Auteurs : Peter J.G. Teunissen, Editeur scientifique ; Olivier Montenbruck, Editeur scientifique Editeur : Springer International Publishing Année de publication : 2017 Importance : 1327 Format : 20 x 27 cm ISBN/ISSN/EAN : 978-3-319-42926-7 Note générale : Bibliographie et glossaire Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] antenne GNSS
[Termes descripteurs IGN] BeiDou
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] Galileo
[Termes descripteurs IGN] géodynamique
[Termes descripteurs IGN] Global Navigation Satellite System
[Termes descripteurs IGN] Global Orbitography Navigation Satellite System
[Termes descripteurs IGN] GNSS-INS
[Termes descripteurs IGN] horloge atomique
[Termes descripteurs IGN] interférence
[Termes descripteurs IGN] ionosphère
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement différentiel
[Termes descripteurs IGN] positionnement ponctuel précis
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] récepteur GNSS
[Termes descripteurs IGN] réflectométrie par GNSS
[Termes descripteurs IGN] résolution d'ambiguïté
[Termes descripteurs IGN] signal GNSS
[Termes descripteurs IGN] système d'extension
[Termes descripteurs IGN] temps universel
[Termes descripteurs IGN] traitement du signal
[Termes descripteurs IGN] trajet multipleRésumé : (Editeur) This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike. Note de contenu :
PRINCIPLES OF GNSS
1. Introduction to GNSS
2. Time and reference systems
3. Satellite orbits and attitude
4. Signals and modulation
5. Clocks
6. Atmospheric signal propagation
SATELLITE NAVIGATION SYSTEMS
7. The Global Positioning System (GPS)
8. GLONASS
9. Galileo
10. Chinese navigation satellite systems
11. Regional systems
12. Satellite based augmentation systems
GNSS RECEIVERS AND ANTENNAS
13. Receiver architecture
14. Signal processing
15. Multipath
16. Interference
17. Antennas
18. Simulators and test equipment
GNSS algorithms and models
19. Basic observation equations
20. Combinations of observations
21. Positioning model
22. Least-squares estimation and Kalman filtering
23. Carrier phase integer ambiguity resolution
24. Batch and recursive model validation
POSITIONING AND NAVIGATION
25. Precise point positioning
26. Differential positioning
27. Attitude determination
28. GNSS/INS integration
29. Land and maritime applications
30. Aviation applications
31. Ground based augmentation systems
32. Space applications
SURVEYING, GEODESY AND GEODYNAMICS
33. The international GNSS service
34. Orbit and clock product generation
35. Surveying
36. Geodesy
37. Geodynamics
GNSS REMOTE SENSING AND TIMING
38. Monitoring of the neutral atmosphere
39. Ionosphere monitoring
40. Reflectometry
41. GNSS time and frequency transfer
Annex A: Data formats
Annex B: GNSS parametersNuméro de notice : 22723 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Manuel Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85346 ContientRéservation
Réserver ce documentExemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité 22723-01 30.61 Livre Centre de documentation Géodésie Sorti jusqu'au 12/01/2021 22723-04 DEP-EXG Livre LAREG Dépôt en unité Exclu du prêt 22723-03 DEP-ELG Livre Marne-la-Vallée Dépôt en unité Exclu du prêt 22723-02 DEP-PMC Livre Saint-Mandé Dépôt en unité Exclu du prêt Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis / Robert Odolinski in Journal of geodesy, vol 90 n° 11 (November 2016)
PermalinkPPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK / Amir Khodabandeh in Journal of geodesy, vol 90 n° 9 (September 2016)
PermalinkAn analytical study of PPP-RTK corrections: precision, correlation and user-impact / Amir Khodabandeh in Journal of geodesy, vol 89 n° 11 (november 2015)
PermalinkThe mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning / Nandakumaran Nadarajah in GPS solutions, vol 19 n° 3 (July 2015)
PermalinkReview and principles of PPP-RTK methods / Peter J.G. Teunissen in Journal of geodesy, vol 89 n° 3 (March 2015)
PermalinkGNSS antenna array-aided CORS ambiguity resolution / Bofeng Li in Journal of geodesy, vol 88 n° 4 (April 2014)
PermalinkInstantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles / Peter J.G. Teunissen in Journal of geodesy, vol 88 n° 4 (April 2014)
PermalinkSingle-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances / Peter J.G. Teunissen in Journal of geodesy, vol 87 n° 2 (February 2013)
PermalinkThe affine constrained GNSS attitude model and its multivariate integer least-squares solution / Peter J.G. Teunissen in Journal of geodesy, vol 86 n° 7 (July 2012)
PermalinkGNSS precise point positioning in regional reference frames using real-time broadcast corrections / Lennard Huisman in Journal of applied geodesy, vol 6 n° 1 (January 2012)
Permalink