Détail de l'auteur
Auteur Toren Bach Pedersen |
Documents disponibles écrits par cet auteur



Finding dense locations in symbolic indoor tracking data: modeling, indexing, and processing / Tanvir Ahmed in Geoinformatica [en ligne], vol 21 n° 1 (January - March 2017)
![]()
[article]
Titre : Finding dense locations in symbolic indoor tracking data: modeling, indexing, and processing Type de document : Article/Communication Auteurs : Tanvir Ahmed, Auteur ; Toren Bach Pedersen, Auteur ; Hua Lu, Auteur Année de publication : 2017 Article en page(s) : pp 119 - 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] index spatial
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] requête spatiale
[Termes descripteurs IGN] système de gestion de bases de données relationnellesRésumé : (auteur) Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical Dense Location Time Index (HDLT-Index) is proposed for indexing the time intervals of the mapping table, along with index construction, query processing, and pruning techniques. The HDLT-Index supports very efficient aggregate point, interval, and duration queries as well as dense location queries. A comprehensive experimental study with both real and synthetic data shows that the proposed techniques are efficient and scalable and outperforms RDBMSs significantly. Numéro de notice : A2017-026 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article En ligne : http://dx.doi.org/10.1007/s10707-016-0276-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83977
in Geoinformatica [en ligne] > vol 21 n° 1 (January - March 2017) . - pp 119 - 150[article]A probabilistic data model and algebra for location-based data warehouses and their implementation / Igor Timko in Geoinformatica, vol 18 n° 2 (April 2014)
![]()
[article]
Titre : A probabilistic data model and algebra for location-based data warehouses and their implementation Type de document : Article/Communication Auteurs : Igor Timko, Auteur ; Curtis Dyreson, Auteur ; Toren Bach Pedersen, Auteur Année de publication : 2014 Article en page(s) : pp 357 - 404 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] entrepôt de données
[Termes descripteurs IGN] incertitude des données
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] service fondé sur la position
[Termes descripteurs IGN] SOLAPRésumé : (Auteur) This paper proposes a novel, probabilistic data model and algebra that improves the modeling and querying of uncertain data in spatial OLAP (SOLAP) to support location-based services. Data warehouses that support location-based services need to combine complex hierarchies, such as road networks or transportation infrastructures, with static and dynamic content, e.g., speed limits and vehicle positions, respectively. Both the hierarchies and the content are often uncertain in real-world applications. Our model supports the use of probability distributions within both facts and dimensions. We give an algebra that correctly aggregates uncertain data over uncertain hierarchies. This paper also describes an implementation of the model and algebra, gives a complexity analysis of the algebra, and reports on an empirical, experimental evaluation of the implementation. The work is motivated with a real-world case study, based on our collaboration with a leading Danish vendor of location-based services. Numéro de notice : A2014-229 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-013-0180-4 date de publication en ligne : 21/05/2013 En ligne : https://doi.org/10.1007/s10707-013-0180-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33132
in Geoinformatica > vol 18 n° 2 (April 2014) . - pp 357 - 404[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 057-2014021 SL Revue Centre de documentation Revues en salle Disponible