Détail de l'auteur
Auteur Sébastien Giordano
Commentaire :
PhD student at MATIS (2012-2015), then researcher at MATIS becoming LaSTIG (2016-2020)
Autorités liées :
idHAL :
sebastien-giordano
idRef :
autre URL :
ORCID :
Scopus :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (28)



FLAIR: French Land cover from Aerial ImageRy - Challenge FLAIR #1: semantic segmentation and domain adaptation / Anatol Garioud (2022)
![]()
Titre : FLAIR: French Land cover from Aerial ImageRy - Challenge FLAIR #1: semantic segmentation and domain adaptation Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Stéphane Peillet, Auteur ; Eva Bookjans, Auteur ; Sébastien Giordano
, Auteur ; Boris Wattrelos
, Auteur
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2022 Importance : 9 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'occupation du sol
[Termes IGN] image aérienne à axe vertical
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantiqueRésumé : (auteur) [context] The French National Institute of Geographical and Forest Information (IGN) has the mission to document and measure land-cover on French territory and provides referential geographical datasets, including high-resolution aerial images and topographic maps. The monitoring of land-cover plays a crucial role in land management and planning initiatives, which can have significant socio-economic and environmental impact. Together with remote sensing technologies, artificial intelligence (IA) promises to become a powerful tool in determining land-cover and its evolution. IGN is currently exploring the potential of IA in the production of high-resolution land cover maps. Notably, deep learning methods are employed to obtain a semantic segmentation of aerial images. However, territories as large as France imply heterogeneous contexts: variations in landscapes and image acquisition make it challenging to provide uniform, reliable and accurate results across all of France. The FLAIR-one dataset presented is part of the dataset currently used at IGN to establish the French national reference land cover map "Occupation du sol à grande échelle" (OCS- GE). Numéro de notice : P2022-010 Affiliation des auteurs : IGN (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2211.12979 En ligne : https://doi.org/10.48550/arXiv.2211.12979 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102141 Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
![]()
Titre : Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns Type de document : Article/Communication Auteurs : Lâmân Lelégard , Auteur ; Arnaud Le Bris
, Auteur ; Sébastien Giordano
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, Commission 3, 24th ISPRS Congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1217 - 1222 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] contraste local
[Termes IGN] correction radiométrique
[Termes IGN] fenêtre (informatique)
[Termes IGN] filtre de Wallis
[Termes IGN] morphologie mathématiqueRésumé : (auteur) An orthophotomosaic is as a single image that can be layered on a map. It is produced from a set of aerial images impaired by radiometric inhomogeneity mostly due to atmospheric phenomena, like hotspot, haze or high altitude clouds shadows as well as the camera itself, like lens vignetting. These create some unsightly radiometric inhomogeneity in the mosaic that could be corrected by using a local adaptive filter, also named Wallis filter. Yet this solution leads to a significant loss of contrast at small scales. This current work introduces two elementary studies. In a first time, in order to quantify the loss of contrast due to the use of Wallis filter, a simple multi-scale score is proposed based on mathematical morphology operations. In a second time, an optimal window size for the filter is identified by considering some systematic radiometric behaviours in the images forming the mosaic through Principal Component Analysis (PCA). These two elementary studies are preliminary steps leading to a method of radiometric correction combining Wallis filtering and PCA. Numéro de notice : C2022-015 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Date de publication en ligne : 31/05/2022 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1217-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100841 Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery / Nicolas David in Remote sensing letters, vol 12 n° 10 (October 2021)
![]()
[article]
Titre : Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery Type de document : Article/Communication Auteurs : Nicolas David , Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Article en page(s) : pp 970 - 982 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] France (administrative)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] politique agricole commune
[Termes IGN] surveillance agricoleRésumé : (auteur) In this paper, we propose an operational solution for the yearly classification of crop parcels at national scale (namely France) for Land Parcel Identification System updating, under the Common Agricultural Policy (CAP) umbrella. Our pipeline is based on the ι2 open-source framework and fed with both time series of Sentinel-1 radar and Sentinel-2 optical images, with complementary contributions. Three conceivable scenarios are investigated with two sets of nomenclatures (17 and 43 classes): early, on-line, and late classifications. Experiments performed on 2017 show very satisfactory results (82–97%), locally almost on-par with state-of-the-art deep-based methods. We can conclude our framework offers a strong basis for country-scale operational deployment for 2020+CAP. Numéro de notice : A2021-600 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/2150704X.2021.1950940 En ligne : https://doi.org/10.1080/2150704X.2021.1950940 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98222
in Remote sensing letters > vol 12 n° 10 (October 2021) . - pp 970 - 982[article]Recurrent-based regression of Sentinel time series for continuous vegetation monitoring / Anatol Garioud in Remote sensing of environment, vol 263 (15 September 2021)
![]()
[article]
Titre : Recurrent-based regression of Sentinel time series for continuous vegetation monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : 3-projet - voir note / Mallet, Clément Article en page(s) : n° 112419 Note générale : bibliographie
This work is funded by the Agence de la transition écologique (ADEME) and the Centre National d'Études Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Dense time series of optical satellite imagery describing vegetation activity provide essential information for the efficient and regular monitoring of vegetation. Nevertheless, the temporal resolution of optical sensors is strongly affected by cloud cover, resulting in significant missing information. The use of complementary acquisitions, such as Synthetic Aperture Radar (SAR) data, opens the door to the development of new multi-sensor methodologies aiming at the reconstruction of missing information. However, the joint exploitation of new radar and optical missions, such as the Sentinel, raises new challenges given the different nature and response of the two data sources. In this work, the SenRVM methodology is proposed as a new multi-sensor approach to regress SAR time series towards Normalized Difference Vegetation Index (NDVI). A deep Recurrent Neural Network architecture which integrates SAR acquisitions and ancillary data is adopted. The regression task permits a continuous optical temporal resolution of 6 days. Multiple experiments are carried out to assess the SenRVM framework by studying two large-scale areas in France. Through an extensive interpretation of the results, SenRVM is evaluated on three main vegetation types (grasslands, crops, and forests). High accurate results (R2 > 0.83 and MAE Numéro de notice : A2021-499 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2021.112419 Date de publication en ligne : 25/06/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98004
in Remote sensing of environment > vol 263 (15 September 2021) . - n° 112419[article]Production et mise à jour d’un produit BD Forêt V3 par apprentissage profond / Sébastien Giordano (2021)
![]()
Titre : Production et mise à jour d’un produit BD Forêt V3 par apprentissage profond Type de document : Article/Communication Auteurs : Sébastien Giordano , Auteur
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2021 Conférence : Atelier Theia 2021, Les utilisations de la télédétection pour la forêt 11/10/2021 11/06/2022 Montpellier France slides & videos Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées IGN
[Termes IGN] BD forêt
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] orthoimage couleurNuméro de notice : C2021-040 Affiliation des auteurs : IGN (2020- ) Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99238 Documents numériques
peut être téléchargé
Production et mise à jour d’un produit BD Forêt V3 ... - diaporamaAdobe Acrobat PDFCNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
PermalinkCorrection of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
PermalinkOn the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
PermalinkSatellite image time series classification with pixel-set encoders and temporal self-attention / Vivien Sainte Fare Garnot (2020)
![]()
PermalinkArchival aerial photogrammetric surveys, a data source to study land use/cover evolution over the last century : opportunities and issues / Arnaud Le Bris (2019)
PermalinkPermalinkChallenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
PermalinkJoint analysis of SAR and optical satellite images time series for grassland event detection / Anatol Garioud (2019)
PermalinkTime-space tradeoff in deep learning models for crop classification on satellite multi-spectral image time series / Vivien Sainte Fare Garnot (2019)
Permalink