Détail de l'auteur
Auteur Jose Luis Lerma Garcia |
Documents disponibles écrits par cet auteur



A semantic graph database for the interoperability of 3D GIS data / Eva Savina Malinverni in Applied geomatics, vol 12 n° 3 (September 2020)
![]()
[article]
Titre : A semantic graph database for the interoperability of 3D GIS data Type de document : Article/Communication Auteurs : Eva Savina Malinverni, Auteur ; Berardo Naticchia, Auteur ; Jose Luis Lerma Garcia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes descripteurs IGN] base de données
[Termes descripteurs IGN] bâtiment
[Termes descripteurs IGN] CityGML
[Termes descripteurs IGN] conservation de documents
[Termes descripteurs IGN] données hétérogènes
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] indoorGML
[Termes descripteurs IGN] interopérabilité sémantique
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] modélisation 3D du bâti BIM
[Termes descripteurs IGN] ontologie
[Termes descripteurs IGN] partage de données localisées
[Termes descripteurs IGN] restauration de document
[Termes descripteurs IGN] SIG 3D
[Termes descripteurs IGN] stockage de données
[Termes descripteurs IGN] web sémantiqueRésumé : (auteur) In the last decades, the use of information management systems in the building data processing led to radical changes to the methods of data production, documentation and archiving. In particular, the possibilities, given by these information systems, to visualize the 3D model and to formulate queries have placed the question of the information sharing in digital format. The integration of information systems represents an efficient solution for defining smart, sustainable and resilient projects, such as conservation and restoration processes, giving the possibilities to combine heterogeneous data. GIS provides a robust data storage system, a definition of topological and semantic relationships and spatial queries. 3D GIS makes possible the creation of three-dimensional model in a geospatial context. To promote the interoperability of GIS data, the present research aims first to analyse methods of conversion in CityGML and IndoorGML model, defining an ontological domain. This has led to the creation of a new enriched model, based on connections among the different elements of the urban model in GIS environment, and to the possibility to formulate queries based on these relations. The second step consists in collecting all data translated into a specific format that fill a graph database in a semantic web environment, while maintaining those relationships. The semantic web technology represents an efficient tool of interoperability that leaves open the possibility to import BIM data in the same graph database and to join both GIS and BIM models. The outcome will offer substantial benefits during the entire project life cycle. This methodology can also be applied to cultural heritage where the information management plays a key role. Numéro de notice : A2020-561 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-020-00334-3 date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1007/s12518-020-00334-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95875
in Applied geomatics > vol 12 n° 3 (September 2020) . - 14 p.[article]
Titre : Theory and practice on terrestrial laser scanning : Training material based on practical applications Type de document : Monographie Auteurs : Jose Luis Lerma Garcia, Editeur scientifique ; M. Santana Quintero, Editeur scientifique ; E. Heine, Editeur scientifique ; B. Van Genechten, Editeur scientifique Editeur : Valencia : Universidad politécnica de Valencia Année de publication : 2008 Importance : 261 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-84-8363-312-0 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] acquisition de données
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] lasergrammétrie
[Termes descripteurs IGN] simulation spatiale
[Termes descripteurs IGN] surveillance
[Termes descripteurs IGN] télémétrie laser terrestreNote de contenu : PREFACE
ACKNOWLEDGEMENTS
GLOSSARY
1. 3D SPATIAL INFORMATION IN MAKING INFORMED DECISIONS
1.1. WHAT IS RISK ASSESSMENT?
1.2. WHAT IS LASER SCANNING?
1.3. STATIC AND DYNAMIC LASER SCANNING
1.4. APPLICATIONS OF LASER SCANNING
2. PRINCIPLES OF LASER SCANNING
2.1. THE ELECTROMAGNETIC SPECTRUM AND LIGHT
2.2. LASERS
2.3. IMPORTANT PROPERTIES OF LASER LIGHT
2.4. LASER SAFETY
2.5. MEASURING USING LIGHT
2.5.1. Triangulation based measurement
2.5.2. Time-based measurement.
2.5.3. Beam deflection methods for time-based measurement systems
2.6. METROLOGICAL ASPECTS: ERROR ANALYSIS
2.6.1. Instrumental errors
2.6.2. Object-related errors
2.6.3. Environmental conditions
2.6.4. Methodological errors
2.7. STATE OF THE ART LASER SCANNER EQUIPMENT
3. LASER SCANNING IN PRACTICE
3.1. SURVEY PLANNING
3.1.1. Determine the goals and objectives
3.1.2. Analyzing the area to be surveyed
3.1.3. Determine optimal scanning locations
3.1.4. Determining the optimal target locations
3.1.5. Data management
3.2. FIELD OPERATION
3.2.1. Survey preparation
3.2.2. Setting up the scanner
3.2.3. Connecting the scanner
3.2.4. Scanner settings
3.3.1. Scanning the object/ building
3.3.2. Scanning targets
3.3.3. Measuring the targets
3.3.4. Completeness checking
3.4. DATA PREPARATION
3.5. REGISTRATION & GEO-REFERENCING
3.5.1. Indirect Registration & Geo-Referencing
3.5.2. Direct Registration & Geo-Referencing
3.5.3. General aspect of Registration and Geo-Referencing
3.6. 3D POINT CLOUD PROCESSING
3.6.1. Point Cloud representations
3.6.2. Data improvement
3.6.3. Direct 2D modelling from point clouds
3.6.4. Direct 3D modelling from point clouds
3.6.5. 3D modelling of complex surfaces
3.6.6. Indirect 2D modelling from point clouds
3.6.7. Texture mapping
3.7. QUALITY CONTROL & DELIVERY
4. DATA MANAGEMENT
5. HERITAGE CASE STUDY (ANTI-DISASTER RECORD): ST. JAMES CHURCH
5.1. INTRODUCTION AND TECHNICAL INFORMATION
5.2. PROBLEM STATEMENT
5.3. SURVEY PLANNING
5.3.1. Goals and objectives
5.3.2. Deliverables
5.3.3. Site documentation
5.3.4. Choosing the right measurement technique
5.3.5. Laser scanner hardware
5.4. DATA ACQUISITION
5.4.1. Interior
5.4.2. Exterior
5.4.3. Targets
5.5. DATA PREPARATION
5.6. REG IS TRA TION & GEO-REFERENCING
5.6.1. Registration: Interior
5.6.2. Registration: Exterior
5.6.3. Registration: Combining Interior and Exterior datasets
5.7. DATA PROCESSING
5.7.1. Direct 2D modelling from point clouds
5.7.2. 3D Modelling of Complex Surfaces
5.7.3. Hole filling
5.7.4. Boundary cleaning
5.7.5. Slicing the Mesh to get Cross Sections
5.7.6. Creating animations.
6. INDUSTRIAL CASE STUDY: FPSO VESSEL
6.1. INTRODUCTION
6.2. PROBLEM STATEMENT
6.3. CHOOSING THE RIGHT MEASUREMENT TECHNIQUE
6.3.1. Measurement techniques within industrial installations
6.3.2. Laser scanning: fit for purpose
6.3.3. Risk minimization by using laser scanning
6.3.4. Engineering processes for industrial installations
6.4. LASER SCANNING PROJECT PLAN
6.4.1. Problem statement
6.4.2. Goals and objectives (purpose)
6.4.3. Define the deliverables
6.4.4. Risk factors
6.4.5. Site documentation
6.4.6. Choice of scanner
6.4.7. Training people
6.4.8. Site preparation
6.4.9. Laser scanning operations
6.5. SIMULATED SCANNING
6.5.1. What is simulated scanning?
6.5.2. Preparation of the scanning assignment
6.5.3. Simulated Scanner Assignment
6.5.4. Data processing
6.5.5. Creating point cloud animations
6.5.6. Laser scan project - deliverables
6.6. ENGINEERING PROJECT PLAN
6.6.1. Working with Cloudworx
6.6.2. Hybrid 3D Reviews (see Figure 182),
6.6.3. Clash detection
6.6.4. As built
6.6.5. Use of laser scanning when needed
6.6.6. Quality Control
7. CIVIL INFRASTRUCTURE CASE STUDY: DEFORMATION MONITORING OF A HYDROELECTRIC DAM
7.1. INTRODUCTION
7.2. OBJECTIVES
7.2.1. Problem statement
7.2.2. Goals
7.2.3. Deliverables
7.2.4. Risk factors
7.2.5. Site documentation
7.3. METHODOLOGY
7.3.1. Session planning
7.4. DATA ACQUISITION
7.4.1. Reference coordinate system
7.4.2. Scanner Mobile
7.4.3. Targets
7.4.4. Scanning Positions
7.4.5. Scanner Settings
7.4.6. Atmospheric conditions
7.4.7. Collecting control data
7.5. DATA PROCESSING
7.5.1. Starting RealWorks Survey
7.5.2. Registration
7.5.3. Georeferencing
7.5.4. Performing a control on scan station positions
7.5.5. Deleting points
7.5.6. Slicing
7.5.7. Sampling and Meshing
7.6. DEFORMATION ANALYSIS
7.6.1. Using CAD software
7.6.2. Using Geomagic® Studio
8. APPENDIX
8.1. CONVERSION OF CYCLONE DATASETS (*.IMP) TO OTHER FORMATS
8.2. CHECKLIST FOR THE ENVIRONMENTAL CASE STUDY
8.3. LIST OF SCANNERS
9. ANSWERS TO QUESTIONS
10. LIST OF FIGURES
11. REFERENCESNuméro de notice : 10399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Monographie Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=62417 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 10399-01 33.80 Livre Centre de documentation Photogrammétrie - Lasergrammétrie Disponible
Titre : Application of terrestrial laser scanning for risk mapping Type de document : Monographie Auteurs : Jose Luis Lerma Garcia, Editeur scientifique ; M. Santana Quintero, Editeur scientifique ; E. Heine, Editeur scientifique Editeur : Valencia : Universidad politécnica de Valencia Année de publication : 2007 Importance : 115 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-84-8363-199-7 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] lasergrammétrie
[Termes descripteurs IGN] patrimoine culturel
[Termes descripteurs IGN] patrimoine immobilier
[Termes descripteurs IGN] pollution des mers
[Termes descripteurs IGN] surveillance
[Termes descripteurs IGN] télémétrie laser terrestreRésumé : (Documentaliste) Ce recueil d'articles à propos de lasergrammétrie abordent la thématique des cartes d'estimation des risques et de surveillance architecturale et environnementale où la 3D est prépondérante. Note de contenu : - Preface
- Terrestrial laser scanning anil risk awareness: The 3D Riskmapping project approach for training / Mar to Sanlana Quintero, Jose Luis Lcrnui Uarcia
- Close range LIDAR application for environmental Monitoring / Fulvio Rincmdo
- Point Cloud Modeling and Visualization of Cultural Heritage / Yutaka Takasc
- 3D Data in Heritage Documentation: Managing outcomes and data performance / Bill Blake
- 3D Laser Scanners: Where are we with the adoption of this technology? Are there still questions? / Rand Eppich, Emile Ax key
- 3D risk mapping: Preparing learning material on the use of laser scanning for risk assessment of public infrastructure / Erwin Heine, Hansjorg Rcincr, Jose Luis Lerma Carcia, Josep Miguel Biosca Taronger, Thomas Wcinold
- Three Dimensional Risk mapping: Industrial Applications - Mapping a Petrochemical plant overseas / Rudy Van Renterghem, Marc dc Bruyne, Martin Hankar, Johan Keysers
- Three Dimensional Riskmapping: Preparing learning material on the use of laser scanning for risk assessment in Heritage documentation / Bjorn Van Clenechten, Mario Sanlana Quintero, Huscyin Caner
- Reconstruction of historical cityscape based on laser scanning and historical paintings / Ronald PoelmanNuméro de notice : 10398 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=39807 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 10398-01 33.80 Livre Centre de documentation Photogrammétrie - Lasergrammétrie Disponible