Détail de l'auteur
Auteur Jordi Inglada |
Documents disponibles écrits par cet auteur



Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
![]()
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : AI4GEO / , MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] appariement sémantique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] Corine Land Cover
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] mise à jour automatique
[Termes descripteurs IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LaSTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]International workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)
Titre : International workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 Type de document : Actes de congrès Auteurs : Mathieu Fauvel, Organisateur de réunion, de conférence ; Jordi Inglada, Organisateur de réunion, de conférence ; Arnaud Le Bris , Organisateur de réunion, de conférence ; Clément Mallet
, Organisateur de réunion, de conférence
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2019 Projets : MAESTRIA / Mallet, Clément Conférence : International workshop 2019 on large scale land cover mapping from remote sensing 03/12/2019 03/12/2019 Saint-Mandé France programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] image numérique
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] territoireRésumé : Workshop sans actes organisé dans le cadre du projet MAESTRIA Numéro de notice : 14366 Affiliation des auteurs : LaSTIG+Ext (2016-2019) Thématique : IMAGERIE Nature : Actes nature-HAL : DirectOuvrColl/Actes DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96917 Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
![]()
Titre : Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier Type de document : Thèse/HDR Auteurs : Benjamin Tardy, Auteur ; Jordi Inglada, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2019 Importance : 228 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du doctorat de l'Université Toulouse 3 Paul Sabatier, Spécialité Surfaces et interfaces continentales, HydrologieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement du territoire
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification de Dempster-Shafer
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] historique des données
[Termes descripteurs IGN] image Formosat
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] série temporelleRésumé : (auteur) L'étude des surfaces continentales constitue un enjeu majeur à l'échelle mondiale pour le suivi et la gestion des territoires, notamment en matière de répartition entre l'expansion urbaine, terres agricoles et espaces naturels. Dans ce contexte, les cartes d'OCcupation des Sols (OCS) caractérisant la couverture biophysique des terres émergées sont un atout essentiel pour l'analyse des surfaces continentales. Les algorithmes de classification supervisée permettent, à partir de séries temporelles annuelles d'images satellites et de données de référence, de produire automatiquement la carte de la période correspondante. Cependant, les données de référence sont une information coûteuse à obtenir surtout sur de grandes étendues. En effet, les campagnes de relevés terrain requièrent un fort coût humain, et les bases de données sont associées à de longs délais de mises à jour. De plus, ces données de référence disposent d'une validité limitée à la période correspondante, en raison des changements d'OCS. Ces changements concernent essentiellement l'expansion urbaine au détriment des surfaces naturelles, et les terres agricoles soumises à la rotation des cultures. L'objectif général de la thèse vise à proposer des méthodes de production de cartes d'OCS sans exploiter les données de référence de la période correspondante. Les travaux menés s'appuient sur un historique d'OCS. Cet historique regroupe toutes les informations disponibles pour la zone concernée : cartes d'OCS, séries temporelles, données de référence, modèles de classification, etc. Une première partie des travaux considère que l'historique ne contient qu'une seule période. Ainsi, nous avons proposé un protocole de classification naïve permettant d'exploiter un classifieur déjà entraîné sur une nouvelle période. Les performances obtenues ont montré que cette approche se révèle insuffisante, requérant ainsi des méthodes plus performantes. L'adaptation de domaine permet d'aborder ce type de problématique. Nous avons considéré deux approches : la projection de données via une analyse canonique des corrélations et le transport optimal. Ces deux approches permettent de projeter les données de l'historique afin de réduire les différences avec l'année à traiter. Néanmoins ces approches offrent des résultats équivalents à la classification naïve pour des coûts de production bien plus significatifs. Une seconde partie des travaux considère que l'historique contient au moins deux périodes de données. À partir des cartes supervisées de ces périodes précédentes, nous proposons une approche de mise à jour de la carte la plus récente, en modélisant les transitions des classes d'OCS. Nous avons également proposé l'utilisation d'un classifieur unique entraîné à partir de plusieurs périodes de l'historique. L'objectif de ce classifieur consiste à pouvoir s'adapter aux variations entre les années. Enfin nous avons mis en place des systèmes de vote afin de réaliser une fusion de classifieurs, chacun entraîné sur une période différente de l'historique. Ces systèmes offrent l'avantage d'être toujours plus performants que chaque classifieur individuellement. Nous avons comparé les performances de plusieurs approches allant du simple vote majoritaire à des fusions plus complexes: vote par confiance, vote par probabilités, vote Dempster-Shafer ainsi qu'une inférence bayésienne. Ces approches produisent des performances similaires, mais pour des coûts de production variables. Nous avons expérimenté ces approches sur deux jeux de données, l'un constitué de sept années d'images Formosat-2 et l'autre de trois années d'images Sentinel-2. Le premier offre une très bonne diversité temporelle mais sur une faible emprise spatiale. Inversement, le second couvre une large zone mais pour un historique limité. Nous avons conclu que les approches du classifieur unique ainsi qu'un simple vote majoritaire offrent de bonnes performances pour des faibles coûts indépendamment du jeu de données. Note de contenu : I- Introduction
II- Présentation du problème
III- Propositions de méthodes exploitant un unique domaine Source
IV- Propositions de méthodes exploitant de multiples domaines Source
V- Mise en oeuvre des méthodes pour une production opérationnelle sur de
grandes étendues
VI ConclusionsNuméro de notice : 28509 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et interfaces continentales, Hydrologie : Université Toulouse 3 : 2019 Organisme de stage : CESBIO DOI : sans En ligne : http://www.theses.fr/2019TOU30261 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97060 Effect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)
![]()
[article]
Titre : Effect of training class label noise on classification performances for land cover mapping with satellite image time series Type de document : Article/Communication Auteurs : Charlotte Pelletier, Auteur ; Silvia Valero, Auteur ; Jordi Inglada, Auteur ; Nicolas Champion , Auteur ; Claire Marais-Sicre, Auteur ; Gérard Dedieu, Auteur
Année de publication : 2017 Projets : 1-Pas de projet / Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image SPOT 4
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Supervised classification systems used for land cover mapping require accurate reference databases. These reference data come generally from different sources such as field measurements, thematic maps, or aerial photographs. Due to misregistration, update delay, or land cover complexity, they may contain class label noise, i.e., a wrong label assignment. This study aims at evaluating the impact of mislabeled training data on classification performances for land cover mapping. Particularly, it addresses the random and systematic label noise problem for the classification of high resolution satellite image time series. Experiments are carried out on synthetic and real datasets with two traditional classifiers: Support Vector Machines (SVM) and Random Forests (RF). A synthetic dataset has been designed for this study, simulating vegetation profiles over one year. The real dataset is composed of Landsat-8 and SPOT-4 images acquired during one year in the south of France. The results show that both classifiers are little influenced for low random noise levels up to 25%–30%, but their performances drop down for higher noise levels. Different classification configurations are tested by increasing the number of classes, using different input feature vectors, and changing the number of training instances. Algorithm complexities are also analyzed. The RF classifier achieves high robustness to random and systematic label noise for all the tested configurations; whereas the SVM classifier is more sensitive to the kernel choice and to the input feature vectors. Finally, this work reveals that the cross-validation procedure is impacted by the presence of class label noise. Numéro de notice : A2017-896 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : doi.org/10.3390/rs9020173 date de publication en ligne : 18/02/2017 En ligne : https://doi.org/10.3390/rs9020173 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91880
in Remote sensing > vol 9 n° 2 (February 2017) . - pp 1 - 24[article]
Titre : Filtering mislabeled data for improving time series classification Type de document : Article/Communication Auteurs : Charlotte Pelletier, Auteur ; Silvia Valero, Auteur ; Jordi Inglada, Auteur ; Gérard Dedieu, Auteur ; Nicolas Champion , Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2017 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : Multitemp 2017, 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images 27/06/2017 29/06/2017 Brugge Belgique Proceedings IEEE Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] végétationRésumé : (auteur) The supervised classification of optical image time series allow the production of accurate land cover maps over large areas. However, the precision yielded by learning algorithms strongly depends on the quality of the reference data. The reference databases covering a large geographical area usually contain noisy data with an important number of mislabeled instances. These labeling errors result in longer training time, less accurate classifiers, and ultimately poorer results. To address this issue, we proposed a new iterative learning framework that removes mislabeled data from the training set. Specifically, a preliminary outlier rejection procedure based on the well-known Random Forest algorithm is proposed. The presented strategy is tested with the classification of Sentinel-2 image time series acquired on 2016 by using an out-of-date reference dataset collected on 2014. Numéro de notice : C2017-059 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/Multi-Temp.2017.8035217 date de publication en ligne : 14/09/2017 En ligne : https://doi.org/10.1109/Multi-Temp.2017.8035217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97497 New iterative learning strategy to improve classification systems by using outlier detection techniques / Charlotte Pelletier (2017)
PermalinkAssessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)
PermalinkL’ORFEO Toolbox : bilan des années ORFEO et perspectives / Julien Michel in Revue Française de Photogrammétrie et de Télédétection, n° 208 (Octobre 2014)
PermalinkPermalinkPermalinkSatellite image time series analysis under time warping / F. Petitjean in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
PermalinkQualitative spatial reasoning for high-resolution remote sensing image analysis / Jordi Inglada in IEEE Transactions on geoscience and remote sensing, vol 47 n° 2 (February 2009)
PermalinkA new statistical similarity measure for change detection in multi-temporal SAR images and its extension to multi-scale change analysis / Jordi Inglada in IEEE Transactions on geoscience and remote sensing, vol 45 n° 5 Tome 2 (May 2007)
PermalinkAnalysis of artifacts in sub-pixel remote sensing image registration / Jordi Inglada in Revue Française de Photogrammétrie et de Télédétection, n° 184 (Décembre 2006)
Permalink