Détail de l'auteur
Auteur Jordi Inglada |
Documents disponibles écrits par cet auteur (18)



Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
![]()
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : AI4GEO / , MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] inférence
[Termes IGN] mise à jour automatique
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 Date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]
Titre : Contextual land-cover map translation with semantic segmentation Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Mallet, Clément Conférence : IGARSS 2021, IEEE International Geoscience And Remote Sensing Symposium 11/07/2021 16/07/2021 Bruxelles Belgique Proceedings IEEE Importance : pp 2488 - 2491 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'occupation du sol
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] France (administrative)
[Termes IGN] segmentation sémantique
[Termes IGN] transformation géométrique
[Termes IGN] translationRésumé : (auteur) This paper presents a framework for translating a land-cover map into another one in a supervised way. This links to numerous applications (updating, completion, etc.). Conversely to existing approaches, we jointly perform spatial and semantic transformation without any prior knowledge. The proposed method assumes that: i) examples of the source and target maps already exist, ii) the spatial resolution of the source map is equal or higher than the target one. The translation is performed using an asymmetric Convolutional Neural Network with positional encoding. Experimental results show the effectiveness of the method in retrieving a yearly version of Corine Land Cover (CLC) at country-scale (France) using an existing high-resolution map and with similar accuracy than existing CLC maps (~80%). Numéro de notice : C2021-049 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS47720.2021.9553693 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.1109/IGARSS47720.2021.9553693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99414
Titre : Learning harmonised Pleiades and Sentinel-2 surface reflectances Type de document : Article/Communication Auteurs : J. Michel, Auteur ; Jordi Inglada, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 265 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Pléiades
[Termes IGN] image Sentinel-MSI
[Termes IGN] réflectance de surface
[Termes IGN] régression linéaireRésumé : (auteur) In this paper, we investigate the use of machine-learning techniques in order to produce harmonised surface reflectances between Sentinel-2 and Pleiades images, and reduce the impact of the differences in sensors, view conditions, and atmospheric correction differences between them. We demonstrate that if a simple linear regression considering Sentinel-2 surface reflectances as the target domain can overcome this problem when both images are calibrated to Top of Canopy reflectances, the non-linearity brought by a simple Multi-Layer-Perceptron is already useful when Pleiades is corrected to Top of Atmosphere level and contributions of the atmosphere need to be learned. We also demonstrate that learning a Convolution Neural Network instead of a plain MLP can learn undesired spatial effects such as mis-registration or differences in spatial frequency content, that will affect the image quality of the corrected Pleiades product. We overcome this issue by proposing an adhoc input convolutional layer that will capture those effects and can later be unplugged during inference. Last, we also propose an architecture and loss function that is robust to unmasked clouds and produces a confidence prediction during inference. Numéro de notice : C2021-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : 10.5194/isprs-archives-XLIII-B3-2021-265-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-265-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98071 International workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)
Titre : International workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 Type de document : Actes de congrès Auteurs : Mathieu Fauvel, Organisateur de réunion ; Jordi Inglada, Organisateur de réunion ; Arnaud Le Bris , Organisateur de réunion ; Clément Mallet
, Organisateur de réunion
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2019 Projets : MAESTRIA / Mallet, Clément Conférence : International workshop 2019 on large scale land cover mapping from remote sensing 03/12/2019 03/12/2019 Saint-Mandé France programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] base de données d'occupation du sol
[Termes IGN] image numérique
[Termes IGN] occupation du sol
[Termes IGN] territoireRésumé : Workshop sans actes organisé dans le cadre du projet MAESTRIA Numéro de notice : 14366 Affiliation des auteurs : LASTIG+Ext (2016-2019) Thématique : IMAGERIE Nature : Actes nature-HAL : DirectOuvrColl/Actes DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96917 Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
![]()
Titre : Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier Type de document : Thèse/HDR Auteurs : Benjamin Tardy, Auteur ; Jordi Inglada, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2019 Importance : 228 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du doctorat de l'Université Toulouse 3 Paul Sabatier, Spécialité Surfaces et interfaces continentales, HydrologieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement du territoire
[Termes IGN] apprentissage automatique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance urbaine
[Termes IGN] fusion de données
[Termes IGN] historique des données
[Termes IGN] image Formosat/COSMIC
[Termes IGN] image Sentinel-MSI
[Termes IGN] série temporelleRésumé : (auteur) L'étude des surfaces continentales constitue un enjeu majeur à l'échelle mondiale pour le suivi et la gestion des territoires, notamment en matière de répartition entre l'expansion urbaine, terres agricoles et espaces naturels. Dans ce contexte, les cartes d'OCcupation des Sols (OCS) caractérisant la couverture biophysique des terres émergées sont un atout essentiel pour l'analyse des surfaces continentales. Les algorithmes de classification supervisée permettent, à partir de séries temporelles annuelles d'images satellites et de données de référence, de produire automatiquement la carte de la période correspondante. Cependant, les données de référence sont une information coûteuse à obtenir surtout sur de grandes étendues. En effet, les campagnes de relevés terrain requièrent un fort coût humain, et les bases de données sont associées à de longs délais de mises à jour. De plus, ces données de référence disposent d'une validité limitée à la période correspondante, en raison des changements d'OCS. Ces changements concernent essentiellement l'expansion urbaine au détriment des surfaces naturelles, et les terres agricoles soumises à la rotation des cultures. L'objectif général de la thèse vise à proposer des méthodes de production de cartes d'OCS sans exploiter les données de référence de la période correspondante. Les travaux menés s'appuient sur un historique d'OCS. Cet historique regroupe toutes les informations disponibles pour la zone concernée : cartes d'OCS, séries temporelles, données de référence, modèles de classification, etc. Une première partie des travaux considère que l'historique ne contient qu'une seule période. Ainsi, nous avons proposé un protocole de classification naïve permettant d'exploiter un classifieur déjà entraîné sur une nouvelle période. Les performances obtenues ont montré que cette approche se révèle insuffisante, requérant ainsi des méthodes plus performantes. L'adaptation de domaine permet d'aborder ce type de problématique. Nous avons considéré deux approches : la projection de données via une analyse canonique des corrélations et le transport optimal. Ces deux approches permettent de projeter les données de l'historique afin de réduire les différences avec l'année à traiter. Néanmoins ces approches offrent des résultats équivalents à la classification naïve pour des coûts de production bien plus significatifs. Une seconde partie des travaux considère que l'historique contient au moins deux périodes de données. À partir des cartes supervisées de ces périodes précédentes, nous proposons une approche de mise à jour de la carte la plus récente, en modélisant les transitions des classes d'OCS. Nous avons également proposé l'utilisation d'un classifieur unique entraîné à partir de plusieurs périodes de l'historique. L'objectif de ce classifieur consiste à pouvoir s'adapter aux variations entre les années. Enfin nous avons mis en place des systèmes de vote afin de réaliser une fusion de classifieurs, chacun entraîné sur une période différente de l'historique. Ces systèmes offrent l'avantage d'être toujours plus performants que chaque classifieur individuellement. Nous avons comparé les performances de plusieurs approches allant du simple vote majoritaire à des fusions plus complexes: vote par confiance, vote par probabilités, vote Dempster-Shafer ainsi qu'une inférence bayésienne. Ces approches produisent des performances similaires, mais pour des coûts de production variables. Nous avons expérimenté ces approches sur deux jeux de données, l'un constitué de sept années d'images Formosat-2 et l'autre de trois années d'images Sentinel-2. Le premier offre une très bonne diversité temporelle mais sur une faible emprise spatiale. Inversement, le second couvre une large zone mais pour un historique limité. Nous avons conclu que les approches du classifieur unique ainsi qu'un simple vote majoritaire offrent de bonnes performances pour des faibles coûts indépendamment du jeu de données. Note de contenu : I- Introduction
II- Présentation du problème
III- Propositions de méthodes exploitant un unique domaine Source
IV- Propositions de méthodes exploitant de multiples domaines Source
V- Mise en oeuvre des méthodes pour une production opérationnelle sur de
grandes étendues
VI ConclusionsNuméro de notice : 28509 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et interfaces continentales, Hydrologie : Toulouse 3 : 2019 Organisme de stage : CESBIO nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2019TOU30261 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97060 Effect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)
PermalinkPermalinkNew iterative learning strategy to improve classification systems by using outlier detection techniques / Charlotte Pelletier (2017)
PermalinkAssessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)
PermalinkL’ORFEO Toolbox : bilan des années ORFEO et perspectives / Julien Michel in Revue Française de Photogrammétrie et de Télédétection, n° 208 (Octobre 2014)
PermalinkPermalinkPermalinkSatellite image time series analysis under time warping / F. Petitjean in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
PermalinkQualitative spatial reasoning for high-resolution remote sensing image analysis / Jordi Inglada in IEEE Transactions on geoscience and remote sensing, vol 47 n° 2 (February 2009)
Permalink