Détail de l'auteur
Auteur Jordi Inglada |
Documents disponibles écrits par cet auteur (21)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp 403 - 437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 403 - 437[article]
Titre : Deep-learning based multiple land-cover map translation Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : 1-Pas de projet / Conférence : IGARSS 2022, IEEE International Geoscience And Remote Sensing Symposium 17/07/2022 22/07/2022 Kuala Lumpur Malaysie Proceedings IEEE Importance : pp 1260 - 1263 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'occupation du sol
[Termes IGN] cadre conceptuel
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] segmentation sémantiqueRésumé : (auteur) This paper presents a framework for simultaneously translating multiple land-cover maps into a given one in a supervised way. Conversely to existing approaches working on 1–1 translation, we propose a multi-translation setup that increases the generalizability and translation performance, especially on land-cover maps covering restricted spatial extents. The proposed method mainly assumes that the map of interest spatially overlaps at least with one of the other maps. High performance translation is achieved with a Convolutional Neural Network (CNN) based encoder-decoder frame-work trained with three goals: (i) high-quality translation; (ii) self-reconstruction ability; (iii) mapping of all datasets into a common representation space. Country-scale experimental results show the method effectiveness in translating six highly heterogeneous land-cover maps, achieving significantly better results than the traditional semantic-based method and better results than CNN trained for a 1–1 translation task (+ 9.7% in Overall Accuracy (OA) and +12% in macro F1-score (mF1)). Numéro de notice : C2022-039 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : https://hal.science/hal-03983066v1/document Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS46834.2022.9883056 En ligne : https://doi.org/10.1109/IGARSS46834.2022.9883056 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101765 Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Année de publication : 2021 Projets : AI4GEO / , MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] inférence
[Termes IGN] mise à jour automatique
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 Date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]
Titre : Contextual land-cover map translation with semantic segmentation Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Conférence : IGARSS 2021, IEEE International Geoscience And Remote Sensing Symposium 11/07/2021 16/07/2021 Bruxelles Belgique Proceedings IEEE Importance : pp 2488 - 2491 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'occupation du sol
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] France (administrative)
[Termes IGN] segmentation sémantique
[Termes IGN] transformation géométrique
[Termes IGN] translationRésumé : (auteur) This paper presents a framework for translating a land-cover map into another one in a supervised way. This links to numerous applications (updating, completion, etc.). Conversely to existing approaches, we jointly perform spatial and semantic transformation without any prior knowledge. The proposed method assumes that: i) examples of the source and target maps already exist, ii) the spatial resolution of the source map is equal or higher than the target one. The translation is performed using an asymmetric Convolutional Neural Network with positional encoding. Experimental results show the effectiveness of the method in retrieving a yearly version of Corine Land Cover (CLC) at country-scale (France) using an existing high-resolution map and with similar accuracy than existing CLC maps (~80%). Numéro de notice : C2021-049 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS47720.2021.9553693 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.1109/IGARSS47720.2021.9553693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99414
Titre : Learning harmonised Pleiades and Sentinel-2 surface reflectances Type de document : Article/Communication Auteurs : J. Michel, Auteur ; Jordi Inglada, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 265 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Pléiades
[Termes IGN] image Sentinel-MSI
[Termes IGN] réflectance de surface
[Termes IGN] régression linéaireRésumé : (auteur) In this paper, we investigate the use of machine-learning techniques in order to produce harmonised surface reflectances between Sentinel-2 and Pleiades images, and reduce the impact of the differences in sensors, view conditions, and atmospheric correction differences between them. We demonstrate that if a simple linear regression considering Sentinel-2 surface reflectances as the target domain can overcome this problem when both images are calibrated to Top of Canopy reflectances, the non-linearity brought by a simple Multi-Layer-Perceptron is already useful when Pleiades is corrected to Top of Atmosphere level and contributions of the atmosphere need to be learned. We also demonstrate that learning a Convolution Neural Network instead of a plain MLP can learn undesired spatial effects such as mis-registration or differences in spatial frequency content, that will affect the image quality of the corrected Pleiades product. We overcome this issue by proposing an adhoc input convolutional layer that will capture those effects and can later be unplugged during inference. Last, we also propose an architecture and loss function that is robust to unmasked clouds and produces a confidence prediction during inference. Numéro de notice : C2021-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : 10.5194/isprs-archives-XLIII-B3-2021-265-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-265-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98071 Learning to translate land-cover maps: Several multi-dimensional context-wise solutions / Luc Baudoux (2021)PermalinkInternational workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)PermalinkMéthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)PermalinkEffect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)PermalinkPermalinkNew iterative learning strategy to improve classification systems by using outlier detection techniques / Charlotte Pelletier (2017)PermalinkAssessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)PermalinkL’ORFEO Toolbox : bilan des années ORFEO et perspectives / Julien Michel in Revue Française de Photogrammétrie et de Télédétection, n° 208 (Octobre 2014)PermalinkImagerie de télédétection / Florence Tupin (2014)Permalink