Détail de l'auteur
Auteur Jean-Pierre Wigneron |
Documents disponibles écrits par cet auteur (11)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach / Martin Schwartz in Earth System Science Data, vol 15 n° inconnu (2023)
[article]
Titre : FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Aurélien de Truchis, Auteur ; Jérôme Chave, Auteur ; Catherine Ottle, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Wigneron, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] données allométriques
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote sensing measurements (NASA’s GEDI LiDAR mission and ESA’s Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha-1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023). Numéro de notice : A2023-179 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-2023-196 En ligne : https://doi.org/10.5194/essd-2023-196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103341
in Earth System Science Data > vol 15 n° inconnu (2023)[article]A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT / Shengli Tao in Earth System Science Data, vol 15 n° 4 (2023)
[article]
Titre : A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Zurui Ao, Auteur ; Jean-Pierre Wigneron, Auteur ; Sassan Saatchi, Auteur ; Philippe Ciais, Auteur ; Jérôme Chave, Auteur ; Thuy Le Toan, Auteur ; Pierre-Louis Frison , Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1577 - 1596 Note générale : bibliographie
Data description paperLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bande Ku
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] régression
[Termes IGN] série temporelleRésumé : (auteur) Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness and has thus been used in a range of Earth science disciplines. However, there is no single global radar data set that has a relatively long wavelength and a decades-long time span. We here provide the first long-term (since 1992), high-resolution (∼8.9 km instead of the commonly used ∼25 km resolution) monthly satellite radar backscatter data set over global land areas, called the long-term, high-resolution scatterometer (LHScat) data set, by fusing signals from the European Remote Sensing satellite (ERS; 1992–2001; C-band; 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009; Ku-band; 13.4 GHz), and the Advanced SCATterometer (ASCAT; since 2007; C-band; 5.255 GHz). The 6-year data gap between C-band ERS and ASCAT was filled by modelling a substitute C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. To this end, we first rescaled the signals from different sensors, pixel by pixel. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals by modelling the signal differences from climatic variables (i.e. monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, root mean square error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r≥0.92, RMSE ≤ 0.11 dB, and rRMSE ≤ 0.38) and pixel levels (median r across pixels ≥ 0.64, median RMSE ≤ 0.34 dB, and median rRMSE ≤ 0.88), suggesting high accuracy for the data-merging procedure. The merged radar signals were then validated against the European Space Agency (ESA) ERS-2 data, which provide observations for a subset of global pixels until 2011, even after the failure of on-board gyroscopes in 2001. We found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals, with regional Pearson r values ranging from 0.79 to 0.98. These results showed that our merged radar data have a consistent C-band signal dynamic. The LHScat data set (https://doi.org/10.6084/m9.figshare.20407857; Tao et al., 2023) is expected to advance our understanding of the long-term changes in, e.g., global vegetation and soil moisture with a high spatial resolution. The data set will be updated on a regular basis to include the latest images acquired by ASCAT and to include even higher spatial and temporal resolutions. Numéro de notice : A2023-097 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-15-1577-2023 Date de publication en ligne : 12/04/2023 En ligne : https://doi.org/10.5194/essd-15-1577-2023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103215
in Earth System Science Data > vol 15 n° 4 (2023) . - pp 1577 - 1596[article]High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)
Titre : High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Catherine Ottle, Auteur ; Aurélien de Truchis, Auteur ; Cédric Vega , Auteur ; Ibrahim Fayad, Auteur ; Martin Brandt, Auteur ; Rasmus Fensholt, Auteur ; Nicolas Baghdadi, Auteur ; François Morneau , Auteur ; David Morin, Auteur ; Dominique Guyon, Auteur ; Sylvia Dayau, Auteur ; Jean-Pierre Wigneron, Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] forêt
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Landes de Gascogne
[Termes IGN] PinophytaRésumé : (auteur) In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km2 with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region. Numéro de notice : P2022-002 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2212.10265 Date de publication en ligne : 20/12/2022 En ligne : https://doi.org/10.48550/arXiv.2212.10265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102850
Titre : Radar backscatter contribution to tropical forest disturbance monitoring Type de document : Thèse/HDR Auteurs : Bertrand Ygorra, Auteur ; Jean-Pierre Wigneron, Directeur de thèse ; Serge Riazanoff, Directeur de thèse ; Frédéric Frappart, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2022 Importance : 253 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de BordeauxLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] forêt tropicale
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] télédétection en hyperfréquenceIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Earth Observations are increasingly used to monitor environmental problems. Its interests lie in the ability of sensors aboard satellites to provide information at global, regional and local scales. Optical remote sensing has shown great potential for the monitoring of forest disturbances. Until recently, deforestation monitoring systems were mainly based on remotely sensed optical images. In the intertropical latitudes, such images often face limitations of frequent cloud cover, leading to late detection or misdetections due to the low temporal availability of new images uncontaminated by clouds. In tropical humid forests, regrowth can close canopy gaps between two non-cloud-contaminated optical images used for detection.New SAR (Synthetic Aperture Radar) systems have opened new perspectives for forest disturbance monitoring in tropical humid forests (Sentinel-1, PALSAR-2). These active sensors penetrate the clouds. The availability of Sentinel-1 C-band images at high spatial and temporal resolutions makes it a potential substitute of optical systems for monitoring disturbances in forest covers.This work is articulated around three parts. The first part consists in the development of a new change detection method for monitoring disturbances in forest cover, based on the Cumulative Sum algorithm (CuSum) combined with a bootstrap analysis. The method was applied to time-series of Sentinel-1 Ground-Range Detected (GRD) dual polarization (VV, VH) images obtained in a legal forest concession near Kisangani in the Democratic Republic of the Congo. The results from VV and VH polarization were intersected in VV x VH result map, and a spatial recombination of a high Critical Threshold (Tc) with a low critical threshold was performed. The second part of this work is to develop a multiple-breakpoints version of the CuSum cross-Tc called ReCuSum to further enhance the ability to monitor changes in forest cover. The development was made by applying the CuSum cross-Tc over a time-series in an iterative manner, in the State of Parà, Brazilian Amazon. The third axis of this thesis is to develop a Near-Real-Time (NRT) version of the CuSum cross-Tc and to compare it with the state-of-the-art NRT algorithms (RADD, JJ-FAST GLAD, DETER-B, DETER-R). Note de contenu :
Chapter 1. General introduction
1.1. Introduction
1.2. Thesis objectives and outline
Chapter 2. Radar remote sensing
2.1. The RADAR technique
2.2. Instrumental parameters
2.3. Scattering mechanisms
2.4. Synthetic Aperture Radar
2.5. Sentinel-1
Chapter 3. Methods for monitoring forest cover change using spaceborne SAR sensors
3.1. Introduction
3.2. Publication
3.3. Contribution and perspectives
Chapter 4. Monitoring forest disturbances from Sentinel-1 time-series: a CuSum?based approach
4.1. Introduction
4.2. Publication
4.3. Conference note: IGARSS 2021
4.4. Contribution to this work and perspectives in the PhD course
Chapter 5. Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum
5.1. Introduction
5.2. Publication
5.3. Conference note: IGARSS 2022
5.4. Contribution to this work and perspective
Chapter 6. Development of the CuSum cross-Tc as an NRT algorithm
6.1. Introduction
6.2. Publication
6.3. Contribution and perspectives
Chapter 7. Conclusion and perspectives
7.1. Conclusion
7.2. PerspectivesNuméro de notice : 26964 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Physique de l’environnement : Bordeaux : 2022 Organisme de stage : INRAE nature-HAL : Thèse DOI : sans Date de publication en ligne : 16/02/2023 En ligne : https://theses.hal.science/tel-03991973v1/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103001 Retrieving the stand age from a retrospective detection of multinannual forest changes using Landsat data. Application on the heavily managed maritime pine forest in Southwestern France from a 30-year Landsat time-series (1984–2014) / Dominique Guyon (2015)
Titre : Retrieving the stand age from a retrospective detection of multinannual forest changes using Landsat data. Application on the heavily managed maritime pine forest in Southwestern France from a 30-year Landsat time-series (1984–2014) Type de document : Article/Communication Auteurs : Dominique Guyon, Auteur ; Sylvio Laventure, Auteur ; Thierry Bélouard , Auteur ; Jean-Charles Samalens, Auteur ; Jean-Pierre Wigneron, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2015 Conférence : IGARSS 2015, International Geoscience And Remote Sensing Symposium 26/07/2015 31/07/2015 Milan Italie Proceedings IEEE Importance : pp 1968 - 1971 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] dendrométrie
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] image Landsat
[Termes IGN] Landes (40)
[Termes IGN] masque
[Termes IGN] Pinus pinaster
[Termes IGN] réflectance végétale
[Termes IGN] série temporelle
[Termes IGN] tempêteRésumé : (auteur) The availability of Landsat data (Landsat 4, 5, 7 and 8) from ~30 years makes it possible to analyze the forest long term dynamics at high resolution (30m). The performances of the Landsat time-series have been already demonstrated for mapping and monitoring the annual clear-cuts and the storm damage in the Landes Forest, that covers ~1 million ha in southwestern France and that is heavily managed with even-aged stands with rather short rotations after clear-cut harvesting. Our objectives aimed at improving, automating, and enriching these previous methods. This was to operationally produce over the whole Landes Forest not only (1) the annual maps of clear-cutting from 1984 up the current year but also (2) the map of the current age that was derived from the forest change detected every year since 1984. The developed methodology used the time-series of surface reflectance and cloud mask provided for Landsat by USGS and sought to cope the possible absence of cloud-free image during the interest season or the numerous missing data in Landsat 7 images after 2002. The retrospective processing of the Landsat time-series from 1984 to 2014 made it possible the prediction of actual current age with a satisfactory accuracy. Numéro de notice : C2015-056 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2015.7326182 Date de publication en ligne : 12/11/2015 En ligne : http://dx.doi.org/10.1109/IGARSS.2015.7326182 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91800 The soil moisture and ocean salinity (SMOS) mission: first results and achievements / Yann H. Kerr in Revue Française de Photogrammétrie et de Télédétection, n° 200 (Novembre 2012)PermalinkEvaluating an improved parameterization of the soil emission in L-MEB / Jean-Pierre Wigneron in IEEE Transactions on geoscience and remote sensing, vol 49 n° 4 (April 2011)PermalinkThe EuroSTARRS airborne campaign in support of the SMOS mission: first results over land surfaces / K. Saleh in International Journal of Remote Sensing IJRS, vol 25 n° 1 (January 2004)PermalinkSurface soil moisture retrieval from L-band radiometry: a global regression study / T. Pellarin in IEEE Transactions on geoscience and remote sensing, vol 41 n° 9 (September 2003)PermalinkSimulating L-band emission of forests in view of future satellite applications / P. Ferrazzoli in IEEE Transactions on geoscience and remote sensing, vol 40 n° 12 (December 2002)PermalinkModélisation de l'émission micro-onde d'un couvert végétal / Jean-Pierre Wigneron (1993)Permalink