Détail de l'auteur
Auteur Christian Heipke |
Documents disponibles écrits par cet auteur (49)



A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases / Chun Yang in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
![]()
[article]
Titre : A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases Type de document : Article/Communication Auteurs : Chun Yang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 38 - 56 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] Allemagne
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] classification automatique d'objets
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] jointure
[Termes IGN] objet géographique
[Termes IGN] occupation du sol
[Termes IGN] optimisation (mathématiques)
[Termes IGN] utilisation du solRésumé : (Auteur) Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics. Numéro de notice : A2021-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.022 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97774
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 38 - 56[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Feature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
![]()
[article]
Titre : Feature detection and description for image matching: from hand-crafted design to deep learning Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 58 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] SIFT (algorithme)Résumé : (Auteur) In feature based image matching, distinctive features in images are detected and represented by feature descriptors. Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points. In this paper, we first shortly discuss the general framework. Then, we review feature detection as well as the determination of affine shape and orientation of local features, before analyzing feature description in more detail. In the feature description review, the general framework of local feature description is presented first. Then, the review discusses the evolution from hand-crafted feature descriptors, e.g. SIFT (Scale Invariant Feature Transform), to machine learning and deep learning based descriptors. The machine learning models, the training loss and the respective training data of learning-based algorithms are looked at in more detail; subsequently the various advantages and challenges of the different approaches are discussed. Finally, we present and assess some current research directions before concluding the paper. Numéro de notice : A2021-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1843376 Date de publication en ligne : 17/11/2020 En ligne : https://doi.org/10.1080/10095020.2020.1843376 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97379
in Geo-spatial Information Science > vol 24 n° 1 (March 2021) . - pp 58 - 74[article]Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis Type de document : Article/Communication Auteurs : Max Mehltretter, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation épipolaire dense
[Termes IGN] couple stéréoscopique
[Termes IGN] courbe épipolaire
[Termes IGN] disparité
[Termes IGN] effet de profondeur cinétique
[Termes IGN] image RVB
[Termes IGN] modèle d'incertitude
[Termes IGN] modèle stochastique
[Termes IGN] voxelRésumé : (auteur) Motivated by the need to identify erroneous disparity estimates, various methods for the estimation of aleatoric uncertainty in the context of dense stereo matching have been presented in recent years. Especially, the introduction of deep learning based methods and the accompanying significant improvement in accuracy have greatly increased the popularity of this field. Despite this remarkable development, most of these methods rely on features learned from disparity maps only, neglecting the corresponding 3-dimensional cost volumes. However, conventional hand-crafted methods have already demonstrated that the additional information contained in such cost volumes are beneficial for the task of uncertainty estimation. In this paper, we combine the advantages of deep learning and cost volume based features and present a new Convolutional Neural Network (CNN) architecture to directly learn features for the task of aleatoric uncertainty estimation from volumetric 3D data. Furthermore, we discuss and apply three different uncertainty models to train our CNN without the need to provide ground truth for uncertainty. In an extensive evaluation on three datasets using three common dense stereo matching methods, we investigate the effects of these uncertainty models and demonstrate the generality and state-of-the-art accuracy of the proposed method. Numéro de notice : A2021-012 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.003 Date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96415
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 63 - 75[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Deep learning for feature based image matching Type de document : Thèse/HDR Auteurs : Lin Chen, Auteur ; Christian Heipke, Directeur de thèse Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2021 Collection : DGK - C, ISSN 0065-5325 num. 867 Importance : 159 p. Format : 21 x 30 cm Note générale : bibliographie
Diese Arbeit ist gleichzeitig veröffentlicht in: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz UniversitätHannoverISSN 0174-1454, Nr. 369, Hannover 2021Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] orthoimageRésumé : (auteur) Feature based image matching aims at finding matched features between two or more images. It is one of the most fundamental research topics in photogrammetry and computer vision. The matching features area prerequisite for applications such as image orientation, Simultaneous Localization and Mapping (SLAM) and robot vision. A typical feature based matching algorithm is composed of five steps: feature detection, affine shape estimation, orientation, description and descriptor matching. Today, the employment of deep neural network has framed those different steps as machine learning problems and the matching performance has been improved significantly. One of the main reasons why feature based image matching may still prove difficult is the complex change between different images, including geometric and radiometric transformations. If the change between images exceeds a certain level, it will also exceed the tolerance of those aforementioned separate steps and, in turn, cause feature based image matching to fail.
This thesis focuses on improving feature based image matching against large viewpoint and viewing direction change between images. In order to improve the feature based image matching performance under these circumstances, affine shape estimation, orientation and description are solved with deep learning architectures. In particular, Convolutional Neural Networks (CNN) are used. For the affine shape and orientation learning, the main contribution of this thesis is two fold. First, instead of a Siamese CNN, only one branch is needed and the loss is built based on the geometric measures calculated from the mean gradient or second moment matrix. Therefore, for each of the input patches, a global minimum, namely the canonical feature, exists. Second, both the affine shape and orientation are solved simultaneously within one network by combining the loss used for affine shape and orientation learning. To the best of the author’s knowledge, this is the first time these two modules are reported to have been successfully trained simultaneously. For the descriptor learning part, a new weak match is defined. For any input feature patch, a slightly transformed patch that lies far from the input feature patch in descriptor space is defined as a weak match feature. A weak match finder network is proposed to actively find these weak match features. In a following step, the found weak matches are used in the standard descriptor learning framework. In this way, the intra-variance of the appearance of matched feature patch pairs is explored in depth and, accordingly, the invariance of feature descriptors against viewpoint and viewing direction change is improved. The proposed feature based image matching method is evaluated on standard benchmarks and is used to solve for the parameters of image orientation. For the image orientation task, aerial oblique images are taken into account. Through analysis of the experiments conducted for small image blocks, it is shown that deep learning feature based image matching leads to more registered images, more reconstructed 3D points and a more stable block connection.Note de contenu : 1- Introduction
2- Basics
3- Related work
4- Deep learning feature representation
5- Experiments and results
6- Discussion
7- Conclusion and outlookNuméro de notice : 17673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD dissertation : Fachrichtung Geodäsie und Geoinformatik : Hanovre : 2021 En ligne : https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-867.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97999
Titre : Robust and fast global image orientation Type de document : Thèse/HDR Auteurs : Xin Wang, Auteur ; Christian Heipke, Directeur de thèse Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2021 Collection : DGK - C, ISSN 0065-5325 num. 871 Importance : 141 p. Note générale : bibliographie
Diese Arbeit ist gleichzeitig veröffentlicht in: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover ISSN 0174-1454, Nr. 373, Hannover 2021Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] chaîne de traitement
[Termes IGN] estimation de pose
[Termes IGN] méthode robuste
[Termes IGN] orientation d'image
[Termes IGN] orientation relative
[Termes IGN] rotation
[Termes IGN] structure-from-motion
[Termes IGN] translation
[Termes IGN] valeur aberranteRésumé : (auteur) The estimation of image orientation (also called pose) has always played a crucial role in the field of photogrammetry since it is a fundamental prerequisite for the subsequent works of multi-view dense matching, generating DEM and DSM, etc. In the community of computer vision, the task is also well known as Structure-from-Motion (SfM), which reveals that image pose, while positions of object points are determined interdependently. Despite a lot of efforts over the last decades, it has recently gained the photogrammetrists’ interests again due to the fast-growing number of different resources of images. New challenges are posed for accurately and efficiently orienting various image datasets (e.g., unordered datasets with a large number of images, or images compromised of critical stereo pairs). In this thesis, the relevant ambition is to develop a new fast and robust method for the estimation of image orientation which is capable of coping with different types of datasets. To achieve this goal, the two most time-consuming steps of image orientation are in particular taken care of: (a) image matching and (b) the estimation process. To accelerate the image matching process, a new method employing a random k-d forest is proposed to quickly obtain pairs of overlapping images from an unordered image set. After that, image matching and the estimation of relative orientation parameters are performed only for pairs found to be very likely overlapping. On the other hand, to estimate the image poses in a time efficient manner, a global image orientation strategy is advocated. Its basic idea is to first simultaneously solve all available images’ poses, before a final bundle adjustment is carried out once for refinement. The conventional two-step global approach is pursued in this work, separating the determination of rotation matrices and translation parameters; the former is solved by an existing popular method of Chatterjee and Govindu [2013], and the latter are estimated globally using a newly developed method: translation estimation integrating both the relative translations and tie points. Tie points within triplets are adopted to firstly calculate global unified scale factors for each available pairwise relative translation. Then, analogous to rotation estimation, translations are determined by performing an averaging operation on the scaled relative translations. In order to improve the robustness of the solution, efforts in this thesis are also focused on coping with outliers in the relative orientations (ROs), which global image orientation approaches are particularly sensitive to. A general method based on triplet compatibility with respect to loop closure errors of relative rotations and translations is presented for detecting blunders in relative orientations. Although this procedure eliminated many gross errors in the input ROs, it typically cannot sort out blunders which are caused by repetitive structures and critical configurations, such as inappropriate baselines (very short baseline or baselines parallel to the viewing direction). Therefore, another new method is proposed to eliminate wrong ROs which have resulted from repetitive structures and very short baselines. Two corresponding criteria that indicate the quality of ROs are introduced. Repetitive structure is detected based on counts of conjugate points of the various image pairs, while very short baselines are found by inspecting the intersection angles of corresponding image rays. By analyzing these two criteria, incorrect ROs are detected and eliminated. As correct ROs of image pairs with a wider baseline nearly parallel to both viewing directions can be valuable, a method to identify and keep these ROs is also a part of this research. The validation and evaluation of the proposed method are thoroughly conducted on various benchmarks including ordered and unordered sets of images, images with repetitive structures and inappropriate baselines, etc. In particular, robustness is investigated by demonstrating the efficacy of the corresponding RO outlier detection methods. The performance and time efficiency of determining image orientation are evaluated and compared with several state-of-the-art global image orientation approaches. In summary, based on the experimental results, the developed methods demonstrateto be able to accomplish the image orientation taskfast and robustlyon different kinds of datasets. Numéro de notice : 17672 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD dissertation : Fachrichtung Geodäsie und Geoinformatik : Hanovre : 2021 En ligne : https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-871.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97997 Context pyramidal network for stereo matching regularized by disparity gradients / Junhua Kang in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkModelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkRobust structure from motion based on relative rotations and tie points / Xin Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 5 (May 2019)
PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkA higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkIV-1/W1 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1 [30/05/2017]) / Christian Heipke
PermalinkInformation from imagery: ISPRS scientific vision and research agenda / Jun Chen in ISPRS Journal of photogrammetry and remote sensing, vol 115 (May 2016)
Permalinkvol 115 - May 2016 - State-of-the-art in photogrammetry, remote sensing and spatial information science (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Christian Heipke
PermalinkII-3 W4 - March 2015 - [actes] PIA15+HRIGI15 Joint ISPRS conference, 25 - 27 March 2015; Munich, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Uwe Stilla
Permalinkvol 100 - February 2015 - High-resolution Earth imaging for geospatial information (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Christian Heipke
Permalink