Détail de l'auteur
Auteur C.T. Chen |
Documents disponibles écrits par cet auteur



The use of fully polarimetric information for the fuzzy neural classification of SAR images / C.T. Chen in IEEE Transactions on geoscience and remote sensing, vol 41 n° 9 (September 2003)
[article]
Titre : The use of fully polarimetric information for the fuzzy neural classification of SAR images Type de document : Article/Communication Auteurs : C.T. Chen, Auteur ; K.S. Chen, Auteur ; Jong-Sen Lee, Auteur Année de publication : 2003 Article en page(s) : pp 2089 - 2100 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image AIRSAR
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] vectorisationRésumé : (Auteur) This paper presents a method, based on a fuzzy neural network, that uses fully polarimetric information for terrain and land-use classification of synthetic aperture radar (SAR) image. The proposed approach makes use of statistical properties of polarimetric data, and takes advantage of a fuzzy neural network. A distance measure, based on a complex Wishart distribution, is applied using the fuzzy c-means clustering algorithm, and the clustering result is then incorporated into the neural network. Instead of preselecting the polarization channels to form a feature vector, all elements of the polarimetric covariance matrix serve as the target feature vector as inputs to the neural network. It is thus expected that the neural network will include fully polarimetric backscattering information for image classification. With the generalization, adaptation, and other capabilities of the neural network, information contained in the covariance matrix, such as the amplitude, the phase difference, the degree of polarization, etc., can be fully explored. A test image, acquired by the Jet Propulsion Laboratory Airborne SAR (AIRSAR) system, is used to demonstrate the advantages of the proposed method. It is shown that the proposed approach can greatly enhance the adaptability and the flexibility giving fully polarimetric SAR for terrain cover classification. The integration of fuzzy c-means (FCM) and fast generalization dynamic learning neural network (DLNN) capabilities makes the proposed algorithm an attractive and alternative method for polarimetric SAR classification. Numéro de notice : A2003-255 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22550
in IEEE Transactions on geoscience and remote sensing > vol 41 n° 9 (September 2003) . - pp 2089 - 2100[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-03091 RAB Revue Centre de documentation En réserve 3L Disponible