Détail de l'auteur
Auteur Kun Jia |
Documents disponibles écrits par cet auteur (2)



Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method / Duanyang Liu in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Fractional vegetation cover estimation algorithm for FY-3B reflectance data based on random forest regression method Type de document : Article/Communication Auteurs : Duanyang Liu, Auteur ; Kun Jia, Auteur ; Haiying jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] image Feng-Yun
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance végétale
[Termes IGN] régressionRésumé : (auteur) As an important land surface vegetation parameter, fractional vegetation cover (FVC) has been widely used in many Earth system ecological and climate models. In particular, high-quality and reliable FVC products on the global scale are important for the Earth surface process simulation and global change studies. Recently, the FengYun-3 (FY-3) series satellites, which are the second generation of Chinese meteorological satellites, launched with the polar orbit and provide continuous land surface observations on a global scale. However, there is rare studying on the FVC estimation using FY-3 reflectance data. Therefore, the FY-3B reflectance data were selected as the representative data to develop a FVC estimation algorithm in this study, which would investigate the capability of the FY-3 reflectance data on the global FVC estimation. The spatial–temporal validation over the regional area indicated that the FVC estimations generated by the proposed algorithm had reliable continuities. Furthermore, a satisfactory accuracy performance (R2 = 0.7336, RMSE = 0.1288) was achieved for the proposed algorithm based on the Earth Observation LABoratory (EOLAB) reference FVC data, which provided further evidence on the reliability and robustness of the proposed algorithm. All these results indicated that the FY-3 reflectance data were capable of generating a FVC estimation with reliable spatial–temporal continuities and accuracy. Numéro de notice : A2021-439 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112165 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97824
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2165[article]Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data / Kun Jia in ISPRS Journal of photogrammetry and remote sensing, vol 93 (July 2014)
![]()
[article]
Titre : Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data Type de document : Article/Communication Auteurs : Kun Jia, Auteur ; Shunlin Liang, Auteur ; Ning Zhang, Auteur ; Xiangqin Wei, Auteur ; Xingfa Gu, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp. 49 - 55 Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] fusion de données
[Termes IGN] image à basse résolution
[Termes IGN] occupation du sol
[Termes IGN] précision des données
[Termes IGN] représentation du temps
[Termes IGN] série temporelleRésumé : (Auteur) Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved. Numéro de notice : A2014-328 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.04.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.04.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73677
in ISPRS Journal of photogrammetry and remote sensing > vol 93 (July 2014) . - pp. 49 - 55[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014071 RAB Revue Centre de documentation En réserve L003 Disponible