Détail de l'auteur
Auteur Cuizhen Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (October 2020)
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données
[Termes IGN] Kiangsi (Chine)
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 Date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (October 2020) . - pp 329 - 342[article]Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain / Linlin Lu in Geocarto international, vol 29 n° 3 - 4 (June - July 2014)
[article]
Titre : Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain Type de document : Article/Communication Auteurs : Linlin Lu, Auteur ; Cuizhen Wang, Auteur ; Huadong Guo, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp. 244 - 255 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture
[Termes IGN] blé (céréale)
[Termes IGN] Chine
[Termes IGN] image SPOT-Végétation
[Termes IGN] phénologie
[Termes IGN] série temporelleRésumé : (Auteur)Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region. Numéro de notice : A2014-338 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2012.760004 En ligne : https://doi.org/10.1080/10106049.2012.760004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73706
in Geocarto international > vol 29 n° 3 - 4 (June - July 2014) . - pp. 244 - 255[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2014021 RAB Revue Centre de documentation En réserve L003 Disponible