Détail de l'auteur
Auteur Amr Abd-Elrahman |
Documents disponibles écrits par cet auteur (5)



Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images Type de document : Article/Communication Auteurs : Zhen Guan, Auteur ; Amr Abd-Elrahman, Auteur ; Zhen Fan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 171 - 186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] canopée
[Termes IGN] données spatiotemporelles
[Termes IGN] hauteur de la végétation
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] orthophotoplan numérique
[Termes IGN] phénologie
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Quantifying canopy biophysical parameters is critical to agricultural research and farm management. In this study, strawberry dry biomass and leaf area were modeled statistically using high spatial and temporal resolution imagery. A mobile field data acquisition system was used to acquire thousands of very high resolution (~0.5 mm) close-range images seven times throughout the strawberry growing season. Ortho-mosaics and dense point clouds were generated through Structure from Motion (SfM) and used in Object-Based Image Analysis (OBIA) at the sub-leaf level to extract canopy structure variables such as planimetric canopy area, canopy average height, and canopy smoothness metric. Regression analysis was carried out using these image-derived canopy variables as predictors to model leaf area ( = 0.79; ten-fold cross-validation RMSE = 0.056 m2) and dry biomass ( = 0.84; ten-fold cross-validation RMSE = 7.72 g) obtained through destructive measurements. Results indicate consistent predictive power through the season and across 17 strawberry genotypes. The study showed that the canopy smoothness metric developed in this study as an indicator of canopy density could complement other variables (planimetric canopy area, canopy average height) that describe canopy geometric properties. Numéro de notice : A2020-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.021 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94757
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 171 - 186[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification / Tao Liu in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
![]()
[article]
Titre : Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification Type de document : Article/Communication Auteurs : Tao Liu, Auteur ; Amr Abd-Elrahman, Auteur Année de publication : 2018 Article en page(s) : pp 154 - 170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] drone
[Termes IGN] orthoimage
[Termes IGN] réseau neuronal convolutif
[Termes IGN] zone humideRésumé : (Auteur) Deep convolutional neural network (DCNN) requires massive training datasets to trigger its image classification power, while collecting training samples for remote sensing application is usually an expensive process. When DCNN is simply implemented with traditional object-based image analysis (OBIA) for classification of Unmanned Aerial systems (UAS) orthoimage, its power may be undermined if the number training samples is relatively small. This research aims to develop a novel OBIA classification approach that can take advantage of DCNN by enriching the training dataset automatically using multi-view data. Specifically, this study introduces a Multi-View Object-based classification using Deep convolutional neural network (MODe) method to process UAS images for land cover classification. MODe conducts the classification on multi-view UAS images instead of directly on the orthoimage, and gets the final results via a voting procedure. 10-fold cross validation results show the mean overall classification accuracy increasing substantially from 65.32%, when DCNN was applied on the orthoimage to 82.08% achieved when MODe was implemented. This study also compared the performances of the support vector machine (SVM) and random forest (RF) classifiers with DCNN under traditional OBIA and the proposed multi-view OBIA frameworks. The results indicate that the advantage of DCNN over traditional classifiers in terms of accuracy is more obvious when these classifiers were applied with the proposed multi-view OBIA framework than when these classifiers were applied within the traditional OBIA framework. Numéro de notice : A2018-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.03.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.03.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89550
in ISPRS Journal of photogrammetry and remote sensing > vol 139 (May 2018) . - pp 154 - 170[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2018051 RAB Revue Centre de documentation En réserve 3L Disponible Classification of submerged aquatic vegetation in Black River using hyperspectral image analysis / Roshan Pande-Chhetri in Geomatica, vol 68 n° 3 (September 2014)
![]()
[article]
Titre : Classification of submerged aquatic vegetation in Black River using hyperspectral image analysis Type de document : Article/Communication Auteurs : Roshan Pande-Chhetri, Auteur ; Amr Abd-Elrahman, Auteur ; Charles Jacoby, Auteur Année de publication : 2014 Article en page(s) : pp 169 - 182 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur paramétrique
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal
[Termes IGN] image hyperspectrale
[Termes IGN] macrophyte
[Termes IGN] profondeur
[Termes IGN] réflexion (rayonnement)
[Termes IGN] surface de l'eauRésumé : (Auteur) Le contrôle de la végétation aquatique est un élément important de la gestion des ressources en eau en raison des services écologiques rendus par ces habitats. L'imagerie hyperspectrale dense sur le plan spectral peut être un outil efficace pour cartographier et classifier les communautés macrophytes. L'identification de la végétation submergée dans les régions aquatiques est compliquée par les variations des propriétés optiques des constituants de l'eau, de la géométrie des capteurs d'eau et d'ensoleillement, de la profondeur de l'eau et de la complexité spectrale/structurale des plantes. Plusieurs études ont tenté de détecter la végétation aquatique dans les eaux côtières; mais peu d’études ont ciblé des rivières peu profondes aux eaux noires teintées contaminées par des matières organiques dissoutes du groupe chromophore (CDOM). La présente étude examine les méthodes pour analyser l'imagerie hyperspectrale aéroportée et pour détecter et classifier la végétation aquatique dans un système fluvial d'eaux noires. Les images ont été normalisées afin de tenir compte de la réflexion de la surface de l'eau et de la profondeur changeante de l'eau avant leur analyse par le classificateur à vraisemblance maximale (ML) et trois autres classificateurs non paramétriques: le réseau de neurones formels (ANN), la machine à vecteurs de support (SVM) et un appareil de cartographie angulaire spectral (SAM). L'analyse de l’évaluation de la qualité a indiqué une amélioration générale de la détection et de la classification lorsque les classificateurs non paramétriques étaient appliqués aux images normalisées et à profondeur constante. Une précision maximale de classification d'environ 69% a été atteinte lorsque le classificateur ANN était appliqué aux images normalisées et des précisions maximales de détection de 93% et de 92% ont été atteintes lorsque les classificateurs SAM et SVM étaient appliqués aux images à profondeur constante, respectivement. Numéro de notice : A2014-621 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5623/cig2014-302 En ligne : https://doi.org/10.5623/cig2014-302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=74999
in Geomatica > vol 68 n° 3 (September 2014) . - pp 169 - 182[article]GIS-based modeling of sea level rise effect on coastal property management policies / C. A. Nettleman in SaLIS Surveying and land information science, vol 72 n° 4 (December 2012)
[article]
Titre : GIS-based modeling of sea level rise effect on coastal property management policies Type de document : Article/Communication Auteurs : C. A. Nettleman, Auteur ; Thomas Ruppert, Auteur ; Amr Abd-Elrahman, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 173 - 187 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] modèle numérique de surface
[Termes IGN] montée du niveau de la mer
[Termes IGN] niveau moyen des mers
[Termes IGN] planification côtière
[Termes IGN] surveillance du littoral
[Termes IGN] système d'information géographiqueRésumé : (Auteur)Florida is threatened by sea level rise (SLR) because of its low elevation and populous coastlines. With only a 0.3 m future water level rise, most of Florida's natural beaches will disappear; with a 1.2 m rise, 2.4 million people will be displaced and 730,000 hectares of land lost. The only way to combat this threat is through coastal policy making. Currently, counties in Florida have no way to choose “good” policies due to the lack of needed information. Using high-resolution digital elevation models (DEM) derived from airborne light detection and ranging (LiDAR) measurements, parcel data, and beach transects from the Army Corps of Engineers, the effects of Sea Level Rise (SLR) on two study areas in Key West (Monroe County) and Pinellas County were analyzed in this study, under three policy scenarios: armoring prohibition, armoring, and relocation (rolling easements). To better address the SLR uncertainty, a range of SLR estimates from 0.15 m to 1.35 m, in 0.15 m increments, was used to simulate the three policy options. Each policy scenario was considered in view of selected primary criteria for each policy, obtained from literature and simulating them using ArcGIS. The results show that Key West would be rapidly inundated by rising waters, leaving little room for “relocation” but the mainland of Pinellas would be inundated much more slowly, allowing for progressive policy options to be implemented. Numéro de notice : A2014-393 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73865
in SaLIS Surveying and land information science > vol 72 n° 4 (December 2012) . - pp 173 - 187[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 121-2012041 RAB Revue Centre de documentation En réserve 3L Disponible In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system / Amr Abd-Elrahman in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 4 (July - August 2011)
![]()
[article]
Titre : In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system Type de document : Article/Communication Auteurs : Amr Abd-Elrahman, Auteur ; M. Croxton, Auteur ; Roshan Pande-Chhetri, Auteur ; et al., Auteur Année de publication : 2011 Article en page(s) : pp 463 - 472 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aquaculture
[Termes IGN] chlorophylle
[Termes IGN] cible cachée
[Termes IGN] étang
[Termes IGN] image hyperspectrale
[Termes IGN] qualité des eaux
[Termes IGN] turbidité des eauxRésumé : (Auteur) Knowledge of water quality parameters is integral to sustainability of freshwater aquaculture operations that raise ornamental fish. Our objective in this study is to evaluate the ability of a mobile, ground-based hyperspectral (HS) imaging sensor to determine chlorophyll-a (Chl-a) concentrations in working aquaculture ponds, which represent manipulated, shallow, nutrient-rich systems, and to determine the effect of using submerged reflectance targets on the accuracy of Chl-a estimation. We collected Chl-a measurements from aquaculture ponds ranging from 0.8 to 494 ug/L.. Chl-a measurements showed a strong correlation with two-band and three-band spectral indices computed from the HS image reflectance. Coefficient of determination (R2) values of 0.975 and 0.982 were obtained for the two- and three-band models, respectively, using spectra captured from the submerged target at 10 cm depth. Using spectra captured from water (no submerged targets), R2 values were slightly lower at 0.833 and 0.862 for two- and three-band models. Data from the submerged target at 30 cm depth had the lowest correlation with measured chlorophyll-a concentrations, potentially due to variations in water column properties and shadows cast by the platform. Modeling total Phosphorous (P) and Nitrogen (N) concentrations of the collected samples with the spectral indices sensitive to Chl-a concentrations showed a moderate level of correlation. Removing a model outlier (observation with maximum N and P concentrations) led to a significant increase in the models’ coefficient of determination (e.g. from 0.478 to 0.823 for the P model using three-band index values), which highlighted the possibility of using HS imagery to estimate N and P concentrations and the need for more research to model the interrelationships between Chl-a and nutrient concentrations in aquaculture water systems. Numéro de notice : A2011-298 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2011.02.005 En ligne : https://doi.org/10.1016/j.isprsjprs.2011.02.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31077
in ISPRS Journal of photogrammetry and remote sensing > vol 66 n° 4 (July - August 2011) . - pp 463 - 472[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2011041 SL Revue Centre de documentation Revues en salle Disponible