Détail de l'auteur
Auteur Liqiang Zhang |
Documents disponibles écrits par cet auteur (10)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Liang Zhang, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 4594 - 4604 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire
[Termes IGN] classification par réseau neuronal
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsMots-clés libres : deep neural network with spatial pooling (DNNSP) Résumé : (Auteur) The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. Most works in deep learning have achieved a great success on regular input representations, but they are hard to be directly applied to classify point clouds due to the irregularity and inhomogeneity of the data. In this paper, a deep neural network with spatial pooling (DNNSP) is proposed to classify large-scale point clouds without rasterization. The DNNSP first obtains the point-based feature descriptors of all points in each point cluster. The distance minimum spanning tree-based pooling is then applied in the point feature representation to describe the spatial information among the points in the point clusters. The max pooling is next employed to aggregate the point-based features into the cluster-based features. To assure the DNNSP is invariant to the point permutation and sizes of the point clusters, the point-based feature representation is determined by the multilayer perception (MLP) and the weight sharing for each point is retained, which means that the weight of each point in the same layer is the same. In this way, the DNNSP can learn the features of points scaled from the entire regions to the centers of the point clusters, which makes the point cluster-based feature representations robust and discriminative. Finally, the cluster-based features are input to another MLP for point cloud classification. We have evaluated qualitatively and quantitatively the proposed method using several airborne laser scanning and terrestrial laser scanning point cloud data sets. The experimental results have demonstrated the effectiveness of our method in improving classification accuracy. Numéro de notice : A2018-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2829625 Date de publication en ligne : 22/05/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2829625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91253
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4594 - 4604[article]LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; Feiping Nie, Auteur ; Haiyang Huang, Auteur ; Jie Mei, Auteur Année de publication : 2018 Article en page(s) : pp 621 - 634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification semi-dirigée
[Termes IGN] graphe
[Termes IGN] image aérienne
[Termes IGN] programmation par contraintes
[Termes IGN] régression linéaire
[Termes IGN] scèneRésumé : (Auteur) The performance of scene classification relies heavily on the spatial and structural features that are extracted from high spatial resolution remote-sensing images. Existing approaches, however, are limited in adequately exploiting latent relationships between scene images. Aiming to decrease the distances between intraclass images and increase the distances between interclass images, we propose a latent relationship learning framework that integrates an adaptive graph with the constraints of the feature space and label propagation for high-resolution aerial image classification. To describe the latent relationships among scene images in the framework, we construct an adaptive graph that is embedded into the constrained joint space for features and labels. To remove redundant information and improve the computational efficiency, subspace learning is introduced to assist in the latent relationship learning. To address out-of-sample data, linear regression is adopted to project the semisupervised classification results onto a linear classifier. Learning efficiency is improved by minimizing the objective function via the linearized alternating direction method with an adaptive penalty. We test our method on three widely used aerial scene image data sets. The experimental results demonstrate the superior performance of our method over the state-of-the-art algorithms in aerial scene image classification. Numéro de notice : A2018-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2752217 Date de publication en ligne : 24/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2752217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89854
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 621 - 634[article]Learning a discriminative distance metric with label consistency for scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Learning a discriminative distance metric with label consistency for scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Hao Deng, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4427 - 4440 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage dirigé
[Termes IGN] image hyperspectrale
[Termes IGN] métrique
[Termes IGN] précision de la classificationRésumé : (Auteur) To achieve high scene classification performance of high spatial resolution remote sensing images (HSR-RSIs), it is important to learn a discriminative space in which the distance metric can precisely measure both similarity and dissimilarity of features and labels between images. While the traditional metric learning methods focus on preserving interclass separability, label consistency (LC) is less involved, and this might degrade scene images classification accuracy. Aiming at considering intraclass compactness in HSR-RSIs, we propose a discriminative distance metric learning method with LC (DDML-LC). The DDML-LC starts from the dense scale invariant feature transformation features extracted from HSR-RSIs, and then uses spatial pyramid maximum pooling with sparse coding to encode the features. In the learning process, the intraclass compactness and interclass separability are enforced while the global and local LC after the feature transformation is constrained, leading to a joint optimization of feature manifold, distance metric, and label distribution. The learned metric space can scale to discriminate out-of-sample HSR-RSIs that do not appear in the metric learning process. Experimental results on three data sets demonstrate the superior performance of the DDML-LC over state-of-the-art techniques in HSR-RSI classification. Numéro de notice : A2017-498 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2692280 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2692280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86440
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4427 - 4440[article]3D tree modeling from incomplete point clouds via optimization and L1-MST / Jie Mei in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
[article]
Titre : 3D tree modeling from incomplete point clouds via optimization and L1-MST Type de document : Article/Communication Auteurs : Jie Mei, Auteur ; Liqiang Zhang, Auteur ; Shihao Wu, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 999 - 1021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme STA
[Termes IGN] arbre (flore)
[Termes IGN] branche (arbre)
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique d'objet
[Termes IGN] optimisation (mathématiques)
[Termes IGN] semis de points
[Termes IGN] semis de points clairsemés
[Termes IGN] squelettisationRésumé : (auteur) Reconstruction of 3D trees from incomplete point clouds is a challenging issue due to their large variety and natural geometric complexity. In this paper, we develop a novel method to effectively model trees from a single laser scan. First, coarse tree skeletons are extracted by utilizing the L1-median skeleton to compute the dominant direction of each point and the local point density of the point cloud. Then we propose a data completion scheme that guides the compensation for missing data. It is an iterative optimization process based on the dominant direction of each point and local point density. Finally, we present a L1-minimum spanning tree (MST) algorithm to refine tree skeletons from the optimized point cloud, which integrates the advantages of both L1-median skeleton and MST algorithms. The proposed method has been validated on various point clouds captured from single laser scans. The experiment results demonstrate the effectiveness and robustness of our method for coping with complex shapes of branching structures and occlusions. Numéro de notice : A2017-239 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1264075 En ligne : http://dx.doi.org/10.1080/13658816.2016.1264075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85173
in International journal of geographical information science IJGIS > vol 31 n° 5-6 (May-June 2017) . - pp 999 - 1021[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2017031 RAB Revue Centre de documentation En réserve L003 Disponible A hierarchical methodology for urban facade parsing from TLS point clouds / Zhuqiang Li in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)
[article]
Titre : A hierarchical methodology for urban facade parsing from TLS point clouds Type de document : Article/Communication Auteurs : Zhuqiang Li, Auteur ; Liqiang Zhang, Auteur ; P. Takis Mathiopoulos, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 75 - 93 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de données
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] évaluation
[Termes IGN] façade
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] zone urbaineRésumé : (Auteur) The effective and automated parsing of building facades from terrestrial laser scanning (TLS) point clouds of urban environments is an important research topic in the GIS and remote sensing fields. It is also challenging because of the complexity and great variety of the available 3D building facade layouts as well as the noise and data missing of the input TLS point clouds. In this paper, we introduce a novel methodology for the accurate and computationally efficient parsing of urban building facades from TLS point clouds. The main novelty of the proposed methodology is that it is a systematic and hierarchical approach that considers, in an adaptive way, the semantic and underlying structures of the urban facades for segmentation and subsequent accurate modeling. Firstly, the available input point cloud is decomposed into depth planes based on a data-driven method; such layer decomposition enables similarity detection in each depth plane layer. Secondly, the labeling of the facade elements is performed using the SVM classifier in combination with our proposed BieS-ScSPM algorithm. The labeling outcome is then augmented with weak architectural knowledge. Thirdly, least-squares fitted normalized gray accumulative curves are applied to detect regular structures, and a binarization dilation extraction algorithm is used to partition facade elements. A dynamic line-by-line division is further applied to extract the boundaries of the elements. The 3D geometrical façade models are then reconstructed by optimizing facade elements across depth plane layers. We have evaluated the performance of the proposed method using several TLS facade datasets. Qualitative and quantitative performance comparisons with several other state-of-the-art methods dealing with the same facade parsing problem have demonstrated its superiority in performance and its effectiveness in improving segmentation accuracy. Numéro de notice : A2017-009 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.11.008 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83910
in ISPRS Journal of photogrammetry and remote sensing > vol 123 (January 2017) . - pp 75 - 93[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)PermalinkA local structure and direction-aware optimization approach for three-dimensional tree modeling / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)PermalinkA multilevel point-cluster-based discriminative feature for ALS point cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)PermalinkA multiscale and hierarchical feature extraction method for terrestrial laser scanning point cloud classification / Z. Wang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)PermalinkA robust image matching method based on optimized BaySAC / Zhizhong Kang in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 11 (November 2014)Permalink