Détail de l'auteur
Auteur Preston J. Hartzell |
Documents disponibles écrits par cet auteur (1)



Empirical waveform decomposition and radiometric calibration of a terrestrial full-waveform laser scanner / Preston J. Hartzell in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
![]()
[article]
Titre : Empirical waveform decomposition and radiometric calibration of a terrestrial full-waveform laser scanner Type de document : Article/Communication Auteurs : Preston J. Hartzell, Auteur ; Craig L. Glennie, Auteur ; David C. Finnegan, Auteur Année de publication : 2015 Article en page(s) : pp 162 - 172 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] décomposition
[Termes IGN] données lidar
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] étalonnage radiométrique
[Termes IGN] forme d'onde pleine
[Termes IGN] instrumentation Riegl
[Termes IGN] Lidar
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle empirique
[Termes IGN] onde lidar
[Termes IGN] télémètre laser terrestreRésumé : (Auteur) The parametric models used in Light Detection And Ranging (LiDAR) waveform decomposition routines are inherently estimates of the sensor's system response to backscattered laser pulse power. This estimation can be improved with an empirical system response model, yielding reduced waveform decomposition residuals and more precise echo ranging. We develop an empirical system response model for a Riegl VZ-400 terrestrial laser scanner, from a series of observations to calibrated reflectance targets, and present a numerical least squares method for decomposing waveforms with the model. The target observations are also used to create an empirical radiometric calibration model that accommodates a nonlinear relationship between received optical power and echo peak amplitude, and to examine the temporal stability of the instrument. We find that the least squares waveform decomposition based on the empirical system response model decreases decomposition fitting errors by an order of magnitude for high-amplitude returns and reduces range estimation errors on planar surfaces by 17% over a Gaussian model. The empirical radiometric calibration produces reflectance values self-consistent to within 5% for several materials observed at multiple ranges, and analysis of multiple calibration data sets collected over a one-year period indicates that echo peak amplitude values are stable to within ±3% for target ranges up to 125 m. Numéro de notice : A2015-040 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2320134 En ligne : https://doi.org/10.1109/TGRS.2014.2320134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75122
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 1 (January 2015) . - pp 162 - 172[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015011 RAB Revue Centre de documentation En réserve 3L Disponible