Détail de l'auteur
Auteur Andrea Nascetti |
Documents disponibles écrits par cet auteur (3)



Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation Type de document : Article/Communication Auteurs : Kathrin Maier, Auteur ; Andrea Nascetti, Auteur ; Ward van Pelt, Auteur ; Gunhild Rosqvist, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 18 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] bande infrarouge
[Termes IGN] épaisseur
[Termes IGN] erreur moyenne quadratique
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] manteau neigeux
[Termes IGN] modèle numérique de surface
[Termes IGN] photogrammétrie aérienne
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité du modèle
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motion
[Termes IGN] SuèdeRésumé : (Auteur) More accurate snow quality predictions are needed to economically and socially support communities in a changing Arctic environment. This contrasts with the current availability of affordable and efficient snow monitoring methods. In this study, a novel approach is presented to determine spatial snow depth distribution in challenging alpine terrain that was tested during a field campaign performed in the Tarfala valley, Kebnekaise mountains, northern Sweden, in April 2019. The combination of a multispectral camera and an Unmanned Aerial Vehicle (UAV) was used to derive three-dimensional (3D) snow surface models via Structure from Motion (SfM) with direct georeferencing. The main advantage over conventional photogrammetric surveys is the utilization of accurate Real-Time Kinematic (RTK) positioning which enables direct georeferencing of the images, and therefore eliminates the need for ground control points. The proposed method is capable of producing high-resolution 3D snow-covered surface models (7 cm/pixel) of alpine areas up to eight hectares in a fast, reliable and affordable way. The test sites’ average snow depth was 160 cm with an average standard deviation of 78 cm. The overall Root-Mean-Square Errors (RMSE) of the snow depth range from 11.52 cm for data acquired in ideal surveying conditions to 41.03 cm in aggravated light and wind conditions. Results of this study suggest that the red components in the electromagnetic spectrum, i.e., the red, red edge, and near-infrared (NIR) band, contain the majority of information used in photogrammetric processing. The experiments highlighted a significant influence of the multi-spectral imagery on the quality of the final snow depth estimation as well as a strong potential to reduce processing times and computational resources by limiting the dimensionality of the imagery through the application of a Principal Component Analysis (PCA) before the photogrammetric 3D reconstruction. The proposed method is part of closing the scale gap between discrete point measurements and regional-scale remote sensing and complements large-scale remote sensing data and snow model output with an adequate validation source. Numéro de notice : A2022-066 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.020 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99783
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 1 - 18[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data / Puzhao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data Type de document : Article/Communication Auteurs : Puzhao Zhang, Auteur ; Andrea Nascetti, Auteur ; Yifang Ban, Auteur ; Maoguo Gong, Auteur Année de publication : 2019 Article en page(s) : pp 50 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] incendie
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Short Waves InfraRedRésumé : (auteur) Compared with optical sensors, the all-weather and day-and-night imaging ability of Synthetic Aperture Radar (SAR) makes it competitive for burnt area mapping. This study investigates the potential of Sentinel-1 C-band SAR sensors in burnt area mapping with an implicit Radar Convolutional Burn Index (RCBI). Based on multitemporal Sentinel-1 SAR data, a convolutional networks-based classification framework is proposed to learn the RCBI for highlighting the burnt areas. We explore the mapping accuracy level that can be achieved using SAR intensity and phase information for both VV and VH polarizations. Moreover, we investigate the decorrelation of Interferometric SAR (InSAR) coherence to wildfire events using different temporal baselines. The experimental results on two recent fire events, Thomas Fire (Dec., 2017) and Carr Fire (July, 2018) in California, demonstrate that the learnt RCBI has a better potential than the classical log-ratio operator in highlighting burnt areas. By exploiting both VV and VH information, the developed RCBI achieved an overall mapping accuracy of 94.68% and 94.17% on the Thomas Fire and Carr Fire, respectively. Numéro de notice : A2019-545 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.013 Date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94189
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019) . - pp 50 - 62[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019123 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019122 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Evaluation and comparison of different radargrammetric approaches for Digital Surface Models generation from COSMO-SkyMed, TerraSAR-X, RADARSAT-2 imagery: Analysis of Beauport (Canada) test site / P. Capaldo in ISPRS Journal of photogrammetry and remote sensing, vol 100 (February 2015)
![]()
[article]
Titre : Evaluation and comparison of different radargrammetric approaches for Digital Surface Models generation from COSMO-SkyMed, TerraSAR-X, RADARSAT-2 imagery: Analysis of Beauport (Canada) test site Type de document : Article/Communication Auteurs : P. Capaldo, Auteur ; Andrea Nascetti, Auteur ; Martina Porfiri, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 60 - 70 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse comparative
[Termes IGN] évaluation des données
[Termes IGN] Geomatica (logiciel)
[Termes IGN] image Cosmo-Skymed
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] image TerraSAR-X
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] modèle numérique de surface
[Termes IGN] orbite
[Termes IGN] orientation
[Termes IGN] orientation du capteur
[Termes IGN] radargrammétrie
[Termes IGN] SISARRésumé : (auteur) In this manuscript, we analyze the potentialities of the radargrammetric DSMs generation using high resolution SAR imagery acquired by three different platforms (COSMO-SkyMed, TerraSAR-X and RADARSAT-2), with particular attention to geometric orientation models. Two orientation models are considered and compared: Toutin’s model (Canada Center for Remote Sensing), implemented in the commercial software package PCI-Geomatica and based on Ground Control Points (GCPs), and the radargrammetric model implemented in the scientific software SISAR (University of Rome La Sapienza), based on images metadata orbital information only. Moreover, a comparison between the DSMs following the image matching approaches implemented in PCI-Geomatica and SISAR has been performed. The analysis has been carried out over Beauport test site (Quebec, Canada), where three overlapping stereopairs, one for each of the mentioned platform, were acquired and a LiDAR ground truth and a dense set of GNSS Check points (CPs) are available. The presented results appear promising: DSMs accuracy are within 4 and 5 m for all sensors, independently from orientation model (with or without GCP) and image matching approach, provided good relative orientation is guaranteed, what mainly attains to the quality of metadata orbital information. Numéro de notice : A2015-054 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.05.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.05.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75287
in ISPRS Journal of photogrammetry and remote sensing > vol 100 (February 2015) . - pp 60 - 70[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015021 RAB Revue Centre de documentation En réserve 3L Disponible