Détail de l'auteur
Auteur Zhong Xie |
Documents disponibles écrits par cet auteur (11)



Geographic named entity recognition by employing natural language processing and an improved BERT model / Liufeng Tao in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
![]()
[article]
Titre : Geographic named entity recognition by employing natural language processing and an improved BERT model Type de document : Article/Communication Auteurs : Liufeng Tao, Auteur ; Zhong Xie, Auteur ; Dexin Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Chine
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données publiques
[Termes IGN] jeu de données
[Termes IGN] reconnaissance de caractères
[Termes IGN] reconnaissance de noms
[Termes IGN] test de performance
[Termes IGN] toponyme
[Termes IGN] traitement du langage naturelRésumé : (auteur) Toponym recognition, or the challenge of detecting place names that have a similar referent, is involved in a number of activities connected to geographical information retrieval and geographical information sciences. This research focuses on recognizing Chinese toponyms from social media communications. While broad named entity recognition methods are frequently used to locate places, their accuracy is hampered by the many linguistic abnormalities seen in social media posts, such as informal sentence constructions, name abbreviations, and misspellings. In this study, we describe a Chinese toponym identification model based on a hybrid neural network that was created with these linguistic inconsistencies in mind. Our method adds a number of improvements to a standard bidirectional recurrent neural network model to help with location detection in social media messages. We demonstrate the results of a wide-ranging evaluation of the performance of different supervised machine learning methods, which have the natural advantage of avoiding human design features. A set of controlled experiments with four test datasets (one constructed and three public datasets) demonstrates the performance of supervised machine learning that can achieve good results on the task, significantly outperforming seven baseline models. Numéro de notice : A2022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120598 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.3390/ijgi11120598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102178
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 598[article]An unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
![]()
[article]
Titre : An unsupervised framework for extracting multilane roads from OpenStreetMap Type de document : Article/Communication Auteurs : Kunkun Wu, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2322 - 2344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] apprentissage non-dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] OpenStreetMap
[Termes IGN] polygone
[Termes IGN] regroupement de pics de densité
[Termes IGN] route
[Termes IGN] segment de droite
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods. Numéro de notice : A2022-797 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2107208 Date de publication en ligne : 05/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2107208 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101956
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2322 - 2344[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Mining spatiotemporal association patterns from complex geographic phenomena / Zhanjun He in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
![]()
[article]
Titre : Mining spatiotemporal association patterns from complex geographic phenomena Type de document : Article/Communication Auteurs : Zhanjun He, Auteur ; Jiannan Cai, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1162 -1 187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] diffusion spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] exploration de données géographiques
[Termes IGN] interaction spatiale
[Termes IGN] modèle entité-association
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] phénomène géographique
[Termes IGN] pollution atmosphérique
[Termes IGN] tempêteRésumé : (auteur) Spatiotemporal association pattern mining can discover interesting interdependent relationships among various types of geospatial data. However, existing mining methods for spatiotemporal association patterns usually model geographic phenomena as simple spatiotemporal point events. Therefore, they cannot be applied to complex geographic phenomena, which continuously change their properties, shapes or locations, such as storms and air pollution. The most salient feature of such complex geographic phenomena is the geographic dynamic. To fully reveal dynamic characteristics of complex geographic phenomena and discover their associated factors, this research proposes a novel complex event-based spatiotemporal association pattern mining framework. First, a complex geographic event was hierarchically modeled and represented by a new data structure named directed spatiotemporal routes. Then, sequence mining technique was applied to discover the spatiotemporal spread pattern of the complex geographic events. An adaptive spatiotemporal episode pattern mining algorithm was proposed to discover the candidate driving factors for the occurrence of complex geographic events. Finally, the proposed approach was evaluated by analyzing the air pollution in the region of Beijing-Tianjin-Hebei. The experimental results showed that the proposed approach can well address the geographic dynamic of complex geographic phenomena, such as the spatial spreading pattern and spatiotemporal interaction with candidate driving factors. Numéro de notice : A2020-340 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1566549 Date de publication en ligne : 01/02/2019 En ligne : https://doi.org/10.1080/13658816.2019.1566549 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95216
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1162 -1 187[article]Multilane roads extracted from the OpenStreetMap urban road network using random forests / Yongyang Xu in Transactions in GIS, vol 23 n° 2 (April 2019)
PermalinkAn analysis of movement patterns between zones using taxi GPS data / Zhanlong Chen in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkAn effective approach to estimating computing time of vector data spatial computational domains in WebGIS / Mingqiang Guo in Geomatica [en ligne], vol 71 n° 1 (March 2017)
PermalinkAn efficient parallel map visualization framework for large vector data / Mingqiang Guo in Geomatica [en ligne], vol 69 n° 1 (March 2015)
PermalinkObject selection in map generalization using geosocial network data: A case study in Wuhan, China / Hao Luo in Geomatica [en ligne], vol 69 n° 1 (March 2015)
PermalinkAn efficient approach to load balancing of vector maps in cyberGIS cluster environment / Mingqiang Guo in Geomatica [en ligne], vol 68 n° 2 (June 2014)
Permalink