Détail de l'auteur
Auteur Sen Jia |
Documents disponibles écrits par cet auteur



Superpixel-based multitask learning framework for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
![]()
[article]
Titre : Superpixel-based multitask learning framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Bin Deng, Auteur ; Jiasong Zhu, Auteur ; Xiuping Jia, Auteur Année de publication : 2017 Article en page(s) : pp 2575 - 2588 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] filtre de Gabor
[Termes descripteurs IGN] image hyperspectraleRésumé : (Auteur) Due to the high spectral dimensionality of hyperspectral images as well as the difficult and time-consuming process of collecting sufficient labeled samples in practice, the small sample size scenario is one crucial problem and a challenging issue for hyperspectral image classification. Fortunately, the structure information of materials, reflecting region of homogeneity in the spatial domain, offers an invaluable complement to the spectral information. Assuming some spatial regularity and locality of surface materials, it is reasonable to segment the image into different homogeneous parts in advance, called superpixel, which can be used to improve the classification performance. In this paper, a superpixel-based multitask learning framework has been proposed for hyperspectral image classification. Specifically, a set of 2-D Gabor filters are first applied to hyperspectral images to extract discriminative features. Meanwhile, a superpixel map is generated from the hyperspectral images. Second, a superpixel-based spatial-spectral Schroedinger eigenmaps (S4E) method is adopted to effectively reduce the dimensions of each extracted Gabor cube. Finally, the classification is carried out by a support vector machine (SVM)-based multitask learning framework. The proposed approach is thus termed Gabor S4E and SVM-based multitask learning (GS4E-MTLSVM). A series of experiments is conducted on three real hyperspectral image data sets to demonstrate the effectiveness of the proposed GS4E-MTLSVM approach. The experimental results show that the performance of the proposed GS4E-MTLSVM is better than those of several state-of-the-art methods, while the computational complexity has been greatly reduced, compared with the pixel-based spatial-spectral Schroedinger eigenmaps method. Numéro de notice : A2017-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2017.2647815 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86389
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2575 - 2588[article]Gabor feature-based collaborative representation for hyperspectral imagery classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)
![]()
[article]
Titre : Gabor feature-based collaborative representation for hyperspectral imagery classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Linlin Shen, Auteur ; Qingquan Li, Auteur Année de publication : 2015 Article en page(s) : pp 1118 - 1129 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification spectrale
[Termes descripteurs IGN] conception collaborative
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] filtre de Gabor
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] précision de la classificationRésumé : (Auteur) Sparse-representation-based classification (SRC) assigns a test sample to the class with minimum representation error via a sparse linear combination of all the training samples, which has successfully been applied to several pattern recognition problems. According to compressive sensing theory, the l1-norm minimization could yield the same sparse solution as the l0 norm under certain conditions. However, the computational complexity of the l1-norm optimization process is often too high for large-scale high-dimensional data, such as hyperspectral imagery (HSI). To make matter worse, a large number of training data are required to cover the whole sample space, which is difficult to obtain for hyperspectral data in practice. Recent advances have revealed that it is the collaborative representation but not the l1-norm sparsity that makes the SRC scheme powerful. Therefore, in this paper, a 3-D Gabor feature-based collaborative representation (3GCR) approach is proposed for HSI classification. When 3-D Gabor transformation could significantly increase the discrimination power of material features, a nonparametric and effective l2-norm collaborative representation method is developed to calculate the coefficients. Due to the simplicity of the method, the computational cost has been substantially reduced; thus, all the extracted Gabor features can be directly utilized to code the test sample, which conversely makes the l2-norm collaborative representation robust to noise and greatly improves the classification accuracy. The extensive experiments on two real hyperspectral data sets have shown higher performance of the proposed 3GCR over the state-of-the-art methods in the literature, in terms of both the classifier complexity and generalization ability from very small training sets. Numéro de notice : A2015-106 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2334608 En ligne : 10.1109/TGRS.2014.2334608 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75624
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 2 (February 2015) . - pp 1118 - 1129[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015021 RAB Revue Centre de documentation En réserve 3L Disponible