Détail de l'auteur
Auteur Ivan Barka |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
MODIS-based vegetation index has sufficient sensitivity to indicate stand-level intra-seasonal climatic stress in oak and beech forests / Tomáš Hlásny in Annals of Forest Science, vol 72 n° 1 (January 2015)
[article]
Titre : MODIS-based vegetation index has sufficient sensitivity to indicate stand-level intra-seasonal climatic stress in oak and beech forests Type de document : Article/Communication Auteurs : Tomáš Hlásny, Auteur ; Ivan Barka, Auteur ; Zuzana Sitková, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 109 - 125 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] chaleur
[Termes IGN] classification par réseau neuronal
[Termes IGN] données météorologiques
[Termes IGN] Fagus (genre)
[Termes IGN] forêt tempérée
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de stress
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prévision météorologique
[Termes IGN] Quercus (genre)
[Termes IGN] sécheresseRésumé : (auteur) Context : Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully.
Aim : The study seeks to evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and to explore the differences in stress response of oaks and beech.
Methods : We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural network-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines.
Results : Tested variables explained 84–97 % of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism.
Conclusions : MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.Numéro de notice : A2015-382 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s13595-014-0404-2 Date de publication en ligne : 30/07/2014 En ligne : https://doi.org/10.1007/s13595-014-0404-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76874
in Annals of Forest Science > vol 72 n° 1 (January 2015) . - pp 109 - 125[article]