Détail de l'auteur
Auteur Adria Rovira-Garcia |
Documents disponibles écrits par cet auteur (6)



Ionospheric corrections tailored to the Galileo High Accuracy Service / Adria Rovira-Garcia in Journal of geodesy, vol 95 n° 12 (December 2021)
![]()
[article]
Titre : Ionospheric corrections tailored to the Galileo High Accuracy Service Type de document : Article/Communication Auteurs : Adria Rovira-Garcia, Auteur ; C.C. Timoté, Auteur ; José Miguel Juan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] GalileoSat
[Termes IGN] mesurage de phase
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement par Galileo
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] retard ionosphèriqueRésumé : (auteur) The Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS. Numéro de notice : A2021-854 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01581-x Date de publication en ligne : 21/11/2021 En ligne : https://doi.org/10.1007/s00190-021-01581-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99059
in Journal of geodesy > vol 95 n° 12 (December 2021) . - n° 130[article]Assessing the quality of ionospheric models through GNSS positioning error: methodology and results / Adria Rovira-Garcia in GPS solutions, vol 24 n° 1 (January 2020)
![]()
[article]
Titre : Assessing the quality of ionospheric models through GNSS positioning error: methodology and results Type de document : Article/Communication Auteurs : Adria Rovira-Garcia, Auteur ; Deimos Ibáñez-Segura, Auteur ; Raül Orús-Pérez, Auteur ; et al., Auteur Année de publication : 2020 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] erreur de positionnement
[Termes IGN] International GNSS Service
[Termes IGN] modèle ionosphérique
[Termes IGN] phase
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèrique
[Termes IGN] trajet multiple
[Termes IGN] valeur aberranteRésumé : (Auteur) Single-frequency users of the global navigation satellite system (GNSS) must correct for the ionospheric delay. These corrections are available from global ionospheric models (GIMs). Therefore, the accuracy of the GIM is important because the unmodeled or incorrectly part of ionospheric delay contributes to the positioning error of GNSS-based positioning. However, the positioning error of receivers located at known coordinates can be used to infer the accuracy of GIMs in a simple manner. This is why assessment of GIMs by means of the position domain is often used as an alternative to assessments in the ionospheric delay domain. The latter method requires accurate reference ionospheric values obtained from a network solution and complex geodetic modeling. However, evaluations using the positioning error method present several difficulties, as evidenced in recent works, that can lead to inconsistent results compared to the tests using the ionospheric delay domain. We analyze the reasons why such inconsistencies occur, applying both methodologies. We have computed the position of 34 permanent stations for the entire year of 2014 within the last Solar Maximum. The positioning tests have been done using code pseudoranges and carrier-phase leveled (CCL) measurements. We identify the error sources that make it difficult to distinguish the part of the positioning error that is attributable to the ionospheric correction: the measurement noise, pseudorange multipath, evaluation metric, and outliers. Once these error sources are considered, we obtain equivalent results to those found in the ionospheric delay domain assessments. Accurate GIMs can provide single-frequency navigation positioning at the decimeter level using CCL measurements and better positions than those obtained using the dual-frequency ionospheric-free combination of pseudoranges. Finally, some recommendations are provided for further studies of ionospheric models using the position domain method. Numéro de notice : A2020-024 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-019-0918-z Date de publication en ligne : 02/11/2019 En ligne : https://doi.org/10.1007/s10291-019-0918-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94468
in GPS solutions > vol 24 n° 1 (January 2020)[article]Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz / Viet Khoi Nguyen in Journal of geodesy, vol 93 n°10 (October 2019)
![]()
[article]
Titre : Measuring phase scintillation at different frequencies with conventional GNSS receivers operating at 1 Hz Type de document : Article/Communication Auteurs : Viet Khoi Nguyen, Auteur ; Adria Rovira-Garcia, Auteur ; José Miguel Juan, Auteur ; et al., Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] artefact
[Termes IGN] filtre passe-haut
[Termes IGN] glissement de cycle
[Termes IGN] horloge du récepteur
[Termes IGN] ionosphère
[Termes IGN] mesurage de phase
[Termes IGN] oscillateur
[Termes IGN] phase GNSS
[Termes IGN] récepteur GNSS
[Termes IGN] retard ionosphèrique
[Termes IGN] scintillation
[Termes IGN] teneur totale en électrons
[Termes IGN] zone équatorialeRésumé : (auteur) Ionospheric scintillation causes rapid fluctuations of measurements from Global Navigation Satellite Systems (GNSSs), thus threatening space-based communication and geolocation services. The phenomenon is most intense in equatorial regions, around the equinoxes and in maximum solar cycle conditions. Currently, ionospheric scintillation monitoring receivers (ISMRs) measure scintillation with high-pass filter algorithms involving high sampling rates, e.g. 50 Hz, and highly stable clocks, e.g. an ultra-low-noise Oven-Controlled Crystal Oscillator. The present paper evolves phase scintillation indices implemented in conventional geodetic receivers with sampling rates of 1 Hz and rapidly fluctuating clocks. The method is capable to mitigate ISMR artefacts that contaminate the readings of the state-of-the-art phase scintillation index. Our results agree in more than 99.9% within ± 0.05 rad (2 mm) of the ISMRs, with a data set of 8 days which include periods of moderate and strong scintillation. The discrepancies are clearly identified, being associated with data gaps and to cycle-slips in the carrier-phase tracking of ISMR that occur simultaneously with ionospheric scintillation. The technique opens the door to use huge databases available from the International GNSS Service and other centres for scintillation studies. This involves GNSS measurements from hundreds of worldwide-distributed geodetic receivers over more than one Solar Cycle. This overcomes the current limitations of scintillation studies using ISMRs, as only a few tens of ISMRs are available and their data are provided just for short periods of time. Numéro de notice : A2019-609 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01297-z Date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.1007/s00190-019-01297-z Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94792
in Journal of geodesy > vol 93 n°10 (October 2019)[article]Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS / Wenfeng Nie in GPS solutions, vol 22 n° 3 (July 2018)
![]()
[article]
Titre : Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS Type de document : Article/Communication Auteurs : Wenfeng Nie, Auteur ; Tianhe Xu, Auteur ; Adria Rovira-Garcia, Auteur ; José Miguel Juan Zornoza, Auteur ; Jaume Sanz, Auteur ; Guillermo Gonzalez-Casado, Auteur ; Chen Wu, Auteur ; Guochang Xu, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] code GPS
[Termes IGN] coordonnées GPS
[Termes IGN] erreur systématique
[Termes IGN] étalonnage des données
[Termes IGN] station permanente
[Termes IGN] teneur totale en électronsMots-clés libres : differential code bias Résumé : (Auteur) The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU. Numéro de notice : A2018-372 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0753-7 Date de publication en ligne : 26/06/2018 En ligne : https://doi.org/10.1007/s10291-018-0753-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90766
in GPS solutions > vol 22 n° 3 (July 2018)[article]Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis / Adria Rovira-Garcia in Journal of geodesy, vol 90 n° 3 (March 2016)
![]()
[article]
Titre : Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis Type de document : Article/Communication Auteurs : Adria Rovira-Garcia, Auteur ; José Miguel Juan, Auteur ; Jaume Sanz, Auteur ; Guillermo Gonzalez-Casado, Auteur ; D. Ibáñez, Auteur Année de publication : 2016 Article en page(s) : pp 229 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] caractérisation
[Termes IGN] données GNSS
[Termes IGN] modèle ionosphérique
[Termes IGN] phase GNSSRésumé : (auteur) The characterization of the accuracy of ionospheric models currently used in global navigation satellite systems (GNSSs) is a long-standing issue. The characterization remains a challenging problem owing to the lack of sufficiently accurate slant ionospheric determinations to be used as a reference. The present study proposes a methodology based on the comparison of the predictions of any ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences are separated as hardware delays (a receiver constant plus a satellite constant) per day. The present study was conducted for the entire year of 2014, i.e. during the last solar cycle maximum. The ionospheric models assessed are the operational models broadcast by the global positioning system (GPS) and Galileo constellations, the satellite-based augmentation system (SBAS) (i.e. European Geostationary Navigation Overlay System (EGNOS) and wide area augmentation system (WAAS)), a number of post-process global ionospheric maps (GIMs) from different International GNSS Service (IGS) analysis centres (ACs) and, finally, a more sophisticated GIM computed by the research group of Astronomy and GEomatics (gAGE). Ionospheric models based on GNSS data and represented on a grid (IGS GIMs or SBAS) correct about 85 % of the total slant ionospheric delay, whereas the models broadcasted in the navigation messages of GPS and Galileo only account for about 70 %. Our gAGE GIM is shown to correct 95 % of the delay. The proposed methodology appears to be a useful tool to improve current ionospheric models. Numéro de notice : A2016-248 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0868-3 Date de publication en ligne : 29/10/2015 En ligne : https://doi.org/10.1007/s00190-015-0868-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80755
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 229 - 240[article]A worldwide ionospheric model for fast precise point positioning / Adria Rovira-Garcia in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)
Permalink