Détail de l'auteur
Auteur Benjamin Herfort |
Documents disponibles écrits par cet auteur (3)



Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique Type de document : Article/Communication Auteurs : Hao Li, Auteur ; Benjamin Herfort, Auteur ; Wei Huang, Auteur Année de publication : 2020 Article en page(s) : pp 41-51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] carte sanitaire
[Termes IGN] cartographie collaborative
[Termes IGN] données localisées des bénévoles
[Termes IGN] géographie sociale
[Termes IGN] inventaire du bâti
[Termes IGN] Mozambique
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] TwitterRésumé : (auteur) Accurate and detailed geographical information digitizing human activity patterns plays an essential role in response to natural disasters. Volunteered geographical information, in particular OpenStreetMap (OSM), shows great potential in providing the knowledge of human settlements to support humanitarian aid, while the availability and quality of OSM remains a major concern. The majority of existing works in assessing OSM data quality focus on either extrinsic or intrinsic analysis, which is insufficient to fulfill the humanitarian mapping scenario to a certain degree. This paper aims to explore OSM missing built-up areas from an integrative perspective of social sensing and remote sensing. First, applying hierarchical DBSCAN clustering algorithm, the clusters of geo-tagged tweets are generated as proxies of human active regions. Then a deep learning based model fine-tuned on existing OSM data is proposed to further map the missing built-up areas. Hit by Cyclone Idai and Kenneth in 2019, the Republic of Mozambique is selected as the study area to evaluate the proposed method at a national scale. As a result, 13 OSM missing built-up areas are identified and mapped with an over 90% overall accuracy, being competitive compared to state-of-the-art products, which confirms the effectiveness of the proposed method. Numéro de notice : A2020-350 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.007 Date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95233
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 41-51[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 3D micro-mapping : Towards assessing the quality of crowdsourcing to support 3D point cloud analysis / Benjamin Herfort in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
![]()
[article]
Titre : 3D micro-mapping : Towards assessing the quality of crowdsourcing to support 3D point cloud analysis Type de document : Article/Communication Auteurs : Benjamin Herfort, Auteur ; Bernhard Höfle, Auteur ; Carolin Klonner, Auteur Année de publication : 2018 Article en page(s) : pp 73 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] arbre (flore)
[Termes IGN] cartographie collaborative
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données localisées des bénévoles
[Termes IGN] évaluation des données
[Termes IGN] production participative
[Termes IGN] qualité des données
[Termes IGN] semis de points
[Termes IGN] villeRésumé : (Auteur) In this paper, we propose a method to crowdsource the task of complex three-dimensional information extraction from 3D point clouds. We design web-based 3D micro tasks tailored to assess segmented LiDAR point clouds of urban trees and investigate the quality of the approach in an empirical user study. Our results for three different experiments with increasing complexity indicate that a single crowdsourcing task can be solved in a very short time of less than five seconds on average. Furthermore, the results of our empirical case study reveal that the accuracy, sensitivity and precision of 3D crowdsourcing are high for most information extraction problems. For our first experiment (binary classification with single answer) we obtain an accuracy of 91%, a sensitivity of 95% and a precision of 92%. For the more complex tasks of the second Experiment 2 (multiple answer classification) the accuracy ranges from 65% to 99% depending on the label class. Regarding the third experiment – the determination of the crown base height of individual trees – our study highlights that crowdsourcing can be a tool to obtain values with even higher accuracy in comparison to an automated computer-based approach. Finally, we found out that the accuracy of the crowdsourced results for all experiments is hardly influenced by characteristics of the input point cloud data and of the users. Importantly, the results’ accuracy can be estimated using agreement among volunteers as an intrinsic indicator, which makes a broad application of 3D micro-mapping very promising. Numéro de notice : A2018-078 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.009 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89440
in ISPRS Journal of photogrammetry and remote sensing > vol 137 (March 2018) . - pp 73 - 83[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018033 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018032 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management / João Porto de Albuquerque in International journal of geographical information science IJGIS, vol 29 n° 4 (April 2015)
![]()
[article]
Titre : A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management Type de document : Article/Communication Auteurs : João Porto de Albuquerque, Auteur ; Benjamin Herfort, Auteur ; Alexander Brenning, Auteur ; Alexander Zipf, Auteur Année de publication : 2015 Article en page(s) : pp 667 - 689 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] acquisition de données
[Termes IGN] Allemagne
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] Elbe (fleuve)
[Termes IGN] géopositionnement
[Termes IGN] gestion de crise
[Termes IGN] inondation
[Termes IGN] qualité des données
[Termes IGN] risque naturel
[Termes IGN] TwitterRésumé : (Auteur) In recent years, social media emerged as a potential resource to improve the management of crisis situations such as disasters triggered by natural hazards. Although there is a growing research body concerned with the analysis of the usage of social media during disasters, most previous work has concentrated on using social media as a stand-alone information source, whereas its combination with other information sources holds a still underexplored potential. This article presents an approach to enhance the identification of relevant messages from social media that relies upon the relations between georeferenced social media messages as Volunteered Geographic Information and geographic features of flood phenomena as derived from authoritative data (sensor data, hydrological data and digital elevation models). We apply this approach to examine the micro-blogging text messages of the Twitter platform (tweets) produced during the River Elbe Flood of June 2013 in Germany. This is performed by means of a statistical analysis aimed at identifying general spatial patterns in the occurrence of flood-related tweets that may be associated with proximity to and severity of flood events. The results show that messages near (up to 10 km) to severely flooded areas have a much higher probability of being related to floods. In this manner, we conclude that the geographic approach proposed here provides a reliable quantitative indicator of the usefulness of messages from social media by leveraging the existing knowledge about natural hazards such as floods, thus being valuable for disaster management in both crisis response and preventive monitoring. Numéro de notice : A2015-591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2014.996567 En ligne : http://www.tandfonline.com/doi/full/10.1080/13658816.2014.996567 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77878
in International journal of geographical information science IJGIS > vol 29 n° 4 (April 2015) . - pp 667 - 689[article]