Détail de l'auteur
Documents disponibles écrits par cet auteur (13)



Vers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
![]()
Titre : Vers une occupation du sol France entière par imagerie satellite à très haute résolution Type de document : Thèse/HDR Auteurs : Tristan Postadjian , Auteur ; Clément Mallet
, Directeur de thèse ; Arnaud Le Bris
, Encadrant ; Hichem Sahbi, Encadrant
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2020 Importance : 169 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée pour l'obtention du titre de Docteur de l'Université Paris-Est, spécialité : Mathématiques, Sciences et Technologies de l'Information et de la CommunicationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées IGN
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image à très haute résolution
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] mise à jour de base de données
[Termes IGN] occupation du sol
[Termes IGN] OCS GEIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La connaissance de la couverture des territoires en terme d’occupation des sols est devenue un enjeu majeur du XXIème siècle. Que ce soit à l’échelle nationale ou à une échelle plus globale, les initiatives se multiplient pour proposer des cartographies d’occupation des sols qui répondent à des besoins propres à chacune. Consistant à classer des objets présents sur le sol selon des nomenclatures prédéfinies, la tâche est fastidieuse à l’heure actuelle avec des processus essentiellement manuels ou semi-manuels, nécessaires pour garantir le respect de certaines qualités et spécifications. De son côté, la télédétection spatiale a connu un essor conséquent avec la multiplication des capteurs optiques d’observation de la Terre disponibles et de leur diversité en terme de résolutions spectrale, spatiale et temporelle. Ces capteurs optiques proposent chacun une description de la surface terrestre qui leur est propre, et donc caractérisant un ou plusieurs type(s) d’occupation(s) des sols. Ces types dépendent justement des caractéristiques de ces capteurs, caractéristiques adaptées davantage à l’observation des glaciers, des forêts ou des zones plus urbaines par exemple. Les satellites SPOT 6 et SPOT 7, lancés en 2012 et 2014 respectivement, sont dotés de capteurs optiques à très haute résolution spatiale, et acquièrent des images dans quatre bandes spectrales à haute résolution ainsi qu’une bande panchromatique à très haute résolution, permettant de porter la résolution des quatre canaux spectraux à 1,5 m. L’IGN, à partir de ces acquisitions SPOT disponibles sur le pôle de données surfaces continentales THEIA, produit chaque année une couverture d’orthophotos sur l’ensemble du territoire français. Il apparaît dès lors intéressant d’exploiter cette couverture pour générer une OCS millésimée. La problématique de cartographie de l’occupation des sols automatique à partir d’images aériennes ou satellites occupe la communauté de télédétection depuis longtemps, par le biais de processus de classification supervisés, tels que les SVMs, ou les forêts aléatoires pour, entre autres, la vitesse d’exécution de ces derniers. Mais les résultats obtenus par ces méthodes n’ont pas encore permis une réelle automatisation, notamment en adéquation avec des spécifications existantes (erreurs encore trop importantes). En parallèle de ces algorithmes depuis longtemps utilisés, des méthodes d’apprentissage automatique d’un genre nouveau, bien que reposant sur des concepts remontant aux années 1950, émergent depuis une décennie et sont étroitement liés aux recherches menées en machine learning. L’apprentissage profond, dont il est question ici, a fait ses preuves dans de nombreux domaines depuis le traitement naturel du langage, à la reconnaissance d’objets dans des images. Cet essor récent est la conséquence de la disponibilité de grandes bases de données d’apprentissage, ainsi que la démocratisation de l’utilisation de GPUs et de l’accroissement général des puissances de calcul. Représentants principaux de cette famille d’apprentissage, les réseaux de neurones profonds ont réellement bouleversé le monde actuel au quotidien. Que ce soit au niveau académique en terme de recherche, au niveau sociétal, au travers des smartphones par exemple (reconnaissances vocale, faciale, systèmes de recommandation), ou même au niveau politique, avec les questions déontologiques que cela peut poser en terme de confidentialité des données (RGPD) et de protection des libertés individuelles, l’apprentissage profond est au cœur de technologies utilisées par la plupart des gens, de manière transparente et donc sans que ceux-ci s’en aperçoivent. En effet, pour afficher de telles performances dans tant de domaines, l’inconvénient pratique est le besoin très massif de données d’apprentissage lorsque l’on manipule ces algorithmes. Les bases de données géographiques de l’IGN sont donc une opportunité dans notre cas, permettant d’exploiter au mieux les images très haute résolution monoscopiques acquises par les satellites SPOT 6 et 7 en les classifiant automatiquement par réseaux de neurones profonds appris sur ces mêmes bases de données. C’est cette approche que nous proposons dans ces travaux de thèse, avec une volonté d’étudier cette problématique tout en se plaçant dans un cadre plus large à visée opérationnelle, afin de proposer des cartographies sur de grandes étendues géographiques. Les expérimentations menées répondent aux questions soulevées lorsque l’on cherche à classifier de grandes zones : par exemple, la couverture annuelle SPOT produite par l’IGN étant unique, deux images adjacentes de cette couverture peuvent avoir été acquises à des époques différentes. Également, nous étudions les possibilités de transfert d’apprentissage par fine-tuning qui offre beaucoup d’avantages en matière de charges de calcul et de jeu d’apprentissage. Enfin, dans un contexte de mise à jour automatique de bases de données géographiques, l’exploitation jointe d’images aériennes et de réseaux de neurones profonds est étudiée, avec un accent mis sur la préparation des données d’apprentissage issues des bases de données géographiques de l’IGN qui présentent certains inconvénients. Note de contenu : 1- Introduction
2- Etat de l'art
3- Apprentissage profond sur images satellites très haute résolution
4- Mettre à jour des bases de données d'OCS
5- Conclusion et perspectivesNuméro de notice : 25964 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris-Est : 2020 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 08/12/2020 En ligne : https://theses.hal.science/tel-03045637 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96546 Multimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
![]()
Titre de série : Multimodal scene understanding: algorithms, applications and deep learning, ch. 11 Titre : Decision fusion of remote-sensing data for land cover classification Type de document : Chapitre/Contribution Auteurs : Arnaud Le Bris , Auteur ; Nesrine Chehata
, Auteur ; Walid Ouerghemmi
, Auteur ; Cyril Wendl, Auteur ; Tristan Postadjian
, Auteur ; Anne Puissant, Auteur ; Clément Mallet
, Auteur
Editeur : Londres, New York : Academic Press Année de publication : 2019 Importance : pp 341 - 382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] fusion de données multisource
[Termes IGN] image à très haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (Auteur) Very high spatial resolution (VHR) multispectral imagery enables a fine delineation of objects and a possible use of texture information. Other sensors provide a lower spatial resolution but an enhanced spectral or temporal information, permitting one to consider richer land cover semantics. So as to benefit from the complementary characteristics of these multimodal sources, a decision late fusion scheme is proposed. This makes it possible to benefit from the full capacities of each sensor, while dealing with both semantic and spatial uncertainties. The different remote-sensing modalities are first classified independently. Separate class membership maps are calculated and then merged at the pixel level, using decision fusion rules. A final label map is obtained from a global regularization scheme in order to deal with spatial uncertainties while conserving the contrasts from the initial images. It relies on a probabilistic graphical model involving a fit-to-data term related to merged class membership measures and an image-based contrast-sensitive regularization term. Conflict between sources can also be integrated into this scheme. Two experimental cases are presented. In the first case one considers the fusion of VHR multispectral imagery with lower spatial resolution hyperspectral imagery for fine-grained land cover classification problem in dense urban areas. In the second case one uses SPOT 6/7 satellite imagery and Sentinel-2 time series to extract urban area footprints through a two-step process: classifications are first merged in order to detect building objects, from which a urban area prior probability is derived and eventually merged to Sentinel-2 classification output for urban footprint detection. Numéro de notice : H2019-002 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1016/B978-0-12-817358-9.00017-2 Date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1016/B978-0-12-817358-9.00017-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93303 Classification à très large échelle d’images satellites à très haute résolution spatiale par réseaux de neurones convolutifs / Tristan Postadjian in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)
![]()
[article]
Titre : Classification à très large échelle d’images satellites à très haute résolution spatiale par réseaux de neurones convolutifs Type de document : Article/Communication Auteurs : Tristan Postadjian , Auteur ; Arnaud Le Bris
, Auteur ; Hichem Sahbi, Auteur ; Clément Mallet
, Auteur
Année de publication : 2018 Projets : 1-Pas de projet / Article en page(s) : pp 73 - 86 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal
[Termes IGN] image à très haute résolution
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Les algorithmes de classification supervisée d'images satellites constituent un outil fondamental pour le calcul de cartes d'occupation des sols, à toutes les résolutions spatiales existantes. Ils ont permis d'établir la télédétection comme moyen le plus fiable pour la génération de ces cartes. Les récents progrès en apprentissage automatique ont montré les très grandes performances des réseaux de neurones convolutifs pour de nombreuses applications, y compris l'interprétation d'images aériennes et satellites. Le travail présenté dans cet article établit une stratégie quant à l'utilisation d'un réseau de neurone convolutifs pour la classification d'images satellites à très haute résolution spatiale (à savoir SPOT 6/7), couvrant de très larges régions géographiques, avec pour perspective future le calcul de cartes d'occupation des sols à l'échelle d'un pays. Numéro de notice : A2018-514 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.418 Date de publication en ligne : 21/09/2018 En ligne : https://doi.org/10.52638/rfpt.2018.418 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91268
in Revue Française de Photogrammétrie et de Télédétection > n° 217-218 (juin - septembre 2018) . - pp 73 - 86[article]Fusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)
![]()
[article]
Titre : Fusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine Type de document : Article/Communication Auteurs : Cyril Wendl, Auteur ; Arnaud Le Bris , Auteur ; Nesrine Chehata
, Auteur ; Anne Puissant, Auteur ; Tristan Postadjian
, Auteur
Année de publication : 2018 Projets : GeoSud / Article en page(s) : pp 87 - 97 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification pixellaire
[Termes IGN] contraste local
[Termes IGN] détection du bâti
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] régularisation
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation d'image
[Termes IGN] surface imperméableRésumé : (auteur) La fusion d'images multispectrales à très haute résolution spatiale (THR) avec des séries temporelles d'images moins résolues spatialement mais comportant plus de bandes spectrales permet d'améliorer la classification de l'occupation du sol. Elle permet en effet de tirer le meilleur parti des points forts, respectivement, géométriques et sémantiques de ces deux sources. Le travail proposé ici s'intéresse à un processus d'extraction automatique de la tache urbaine fondé sur la fusion tardive de classifications obtenues respectivement à partir d'images satellitaires Sentinel-2 et SPOT 6/7. Ces deux sources sont d'abord analysées indépendamment selon 5 classes, respectivement par Forêt Aléatoire et réseaux de neurones convolutifs. Les résultats sont alors fusionnés afin d'extraire les bâtiments le plus finement possible. Cette étape de fusion inclut une fusion au niveau pixellaire, suivie d'une étape de régularisation spatiale intégrant un terme lié au contraste de l'image. Le résultat obtenu connaît ensuite une seconde fusion afin d'en déduire la-tache urbaine en elle-même : une mesure a priori de zone urbaine est calculée à partir des objets bâtiments détectés au préalable, puis fusionnée avec une classification binaire dérivée de la classification originale des données Sentinel-2. Les résultats montrent bien la complémentarité des deux sources de données ainsi que la pertinence de l'adoption d'une stratégie de fusion tardive. Numéro de notice : A2018-512 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.415 En ligne : https://doi.org/10.52638/rfpt.2018.415 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91266
in Revue Française de Photogrammétrie et de Télédétection > n° 217-218 (juin - septembre 2018) . - pp 87 - 97[article]
Titre : Classification of land use from high resolution satellite imagery Type de document : Mémoire Auteurs : Yasser Kotrsi, Auteur ; Arnaud Le Bris , Encadrant ; Nesrine Chehata
, Encadrant ; Anne Puissant, Encadrant ; Tristan Postadjian
, Encadrant
Editeur : Tunis [Tunisie] : Ecole nationale d'ingénieurs de Carthage Année de publication : 2018 Importance : 112 p. Note générale : bibliographie
End Of Studies Project Report, in fulfillment of the requirements for the degree of National engineering diploma in software engineeringLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bibliothèque logicielle
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Finistère (29)
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] OpenCV
[Termes IGN] Python (langage de programmation)
[Termes IGN] semis de pointsRésumé : (auteur) The MATIS team of the LaSTIG Laboratory of the french mapping agency (IGN) has for several years conducted research activities in the field of classification of remote sensing data (aerial or satellite optical images and point clouds 3D lidar) for land use (OCS), in urban and rural areas. With the arrival of the new Sentinel S1 (radar) and S2 (optical) sensors, time series of images are now available free of charge with a high temporal resolution (between 10 and 15 days) and a high spectral resolution for optical images. In addition, the national territory is covered annually by acquisition of SPOT 6-7 images. The CES Artificialisation-urbanization pole Theia aims at the production of a map of land use in urban environment, with a resolution of 10m. Early work based on the fusion of Sentinel 2 time series with very high resolution data (THR) SPOT 6-7, Pleiades led to the detection of artifical spots, as well as well shaped urban objects. It is now a question of better characterizing this urban space by investigating about the relations between those image regions as well as each one’s spatial properties in order to produce a detailed cartography classified into different types of urban fabrics (residential, dense urban, non-dense, industrial, ...). In this study we dive deep through the problematic of the land use classification, its aspects as well the different approaches to characterize the extracted information about it in order to obtain an accurate classification that corresponds well to the expected results. This study therefore focuses on the continuation of previous work and consists in obtaining a detailed cartography in different types of urban fabrics (residential, dense urban, non-dense, industrial, ..). For that, several scientific locks are raised: • Test the data fusion methods previously used for fine mapping of the urban environment. • Develop different multiscale spatial indicators (size of objects, distance between objects, density of objects, presence of vegetation, ...) to describe the city. • Exploit these indicators in order to find different types of neighborhoods and to characterize land use. The calculation of indicators is based in part on SPOT image classifications 6-7 obtained during previous work. Also the Urban Atlas database, which also details urban spaces in urban classes, is used in the learning stage as well as the Corine Land Cover database. Note de contenu : Introduction
1- Project introduction
2- State of the art and background material
3- Available data and study areas
4- Methodology
5- Results and discussions
Conclusion and perspectivesNuméro de notice : 17187 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire ingénieur Organisme de stage : LaSTIG (IGN) DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98348 Documents numériques
peut être téléchargé
Classification of land use ... - pdf auteurAdobe Acrobat PDFClassification à très haute résolution (THR) spatiale et fusion d'occupation des sols (OCS) / Tristan Postadjian (2018)
PermalinkClassification à très large échelle d'images satellite à très haute résolution spatiale par réseaux de neurones convolutifs / Tristan Postadjian (2018)
![]()
PermalinkDecision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection / Cyril Wendl (2018)
PermalinkDomain adaptation for large scale classification of very high resolution satellite images with deep convolutional neural networks / Tristan Postadjian (2018)
PermalinkFusion tardive d’images SPOT-6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl (2018)
![]()
PermalinkSuperpixel partitioning of very high resolution satellite images for large-scale classification perspectives with deep convolutional neural networks / Tristan Postadjian (2018)
PermalinkInvestigating the potential of deep neural networks for large-scale classification of very high resolution satellite images / Tristan Postadjian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-1/W1 (May 2017)
PermalinkPermalink
https://www.researchgate.net/profile/Tristan_Postadjian2