Détail de l'auteur
Auteur Jiayi Li |
Documents disponibles écrits par cet auteur (4)



A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
![]()
[article]
Titre : A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Xin Huang, Auteur ; Yujin Feng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5600812 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] carte de profondeur
[Termes IGN] déformation d'objet
[Termes IGN] effet de profondeur cinétique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconstruction d'image
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( https://irsip.whu.edu.cn/resources/resources_en_v2.php ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark. Numéro de notice : A2023-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234694 En ligne : https://doi.org/10.1109/TGRS.2023.3234694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102488
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5600812[article]Change detection based on stacked generalization system with segmentation constraint / Kun Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 11 (November 2018)
![]()
[article]
Titre : Change detection based on stacked generalization system with segmentation constraint Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Yusha Zhang, Auteur ; Qian Du, Auteur ; Peijun Du, Auteur ; Xiao Jin, Auteur ; Jiayi Li, Auteur Année de publication : 2018 Article en page(s) : pp 733 - 741 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] détection de changement
[Termes IGN] image Quickbird
[Termes IGN] image ZiYuan-3
[Termes IGN] segmentation d'imageRésumé : (Auteur) Change detection based on a multi-classifier ensemble system can take advantage of multiple classifiers to extract change information in remote sensing images. In this paper, an efficient heterogeneous ensemble algorithm, i.e., the stacked generalization (SG) combined with image segmentation, is proposed to construct a simple multi-classifier ensemble system that can offer better detection accuracy with lower computational cost. Due to the rich spatial information in high-spatial-resolution remote sensing images, structure texture (morphological) and statistical texture features are extracted to construct the input data to the ensemble system along with spectral features. In addition, constrained analysis on segmented objects integrates the smaller heterogeneity segmentation map and pixel-wise change map to generate the final change map. The experiments were carried out on two ZY-3 and a QuickBird dataset. The results show that the proposed algorithm can integrate the advantages of both pixel-wise ensemble and object-oriented methods, and effectively improve the accuracy and stability of change detection. Numéro de notice : A2018-485 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.11.733 Date de publication en ligne : 01/11/2018 En ligne : https://doi.org/10.14358/PERS.84.11.733 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91210
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 11 (November 2018) . - pp 733 - 741[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018111 RAB Revue Centre de documentation En réserve 3L Disponible Urban classification by the fusion of thermal infrared hyperspectral and visible data / Jiayi Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 12 (December 2015)
![]()
[article]
Titre : Urban classification by the fusion of thermal infrared hyperspectral and visible data Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Hongyan Zhang, Auteur ; Min Guo, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 901 - 911 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] bande spectrale
[Termes IGN] bande visible
[Termes IGN] classification dirigée
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] occupation du solRésumé : (auteur) The 2014 Data Fusion Contest, organized by the Image Analysis and Data Fusion (IADF) Technical Committee of the IEEE Geoscience and Remote Sensing Society, involved two datasets acquired at different spectral ranges and spatial resolutions: a coarser-resolution long-wave infrared (LWIR, thermal infrared) hyperspectral data set and fine-resolution data acquired in the visible (VIS) wavelength range. In this article, a novel multi-level fusion approach is proposed to fully utilize the characteristics of these two different datasets to achieve improved urban land-use and land-cover classification. Specifically, road extraction by fusing the classification result of the TI-HSI dataset and the segmentation result of the VIS dataset is first proposed. Thereafter, a novel gap inpainting method for the VIS data with the guidance of the TI-HSI data is presented to deal with the swath width inconsistency, and to facilitate an accurate spatial feature extraction step. The experimental results with the 2014 Data Fusion Contest datasets suggest that the proposed method can alleviate the multi-spectral-spatial resolution and multi-swath width problem to a great extent, and achieve an improved urban classification accuracy. Numéro de notice : A2015-990 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.81.12.901 En ligne : https://doi.org/10.14358/PERS.81.12.901 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80271
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 12 (December 2015) . - pp 901 - 911[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2015121 RAB Revue Centre de documentation En réserve 3L Disponible 105-2015122 RAB Revue Centre de documentation En réserve 3L Disponible Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)
![]()
[article]
Titre : Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Hongyan Zhang, Auteur ; Liangpei Zhang, Auteur Année de publication : 2015 Article en page(s) : pp 5338 - 5351 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] données clairsemées
[Termes IGN] image hyperspectrale
[Termes IGN] représentation des donnéesRésumé : (Auteur) In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers. Numéro de notice : A2015-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2421638 Date de publication en ligne : 29/04/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2421638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78758
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 10 (October 2015) . - pp 5338 - 5351[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015101 SL Revue Centre de documentation Revues en salle Disponible