Détail de l'auteur
Auteur Benjamin Männel |
Documents disponibles écrits par cet auteur



GLONASS FDMA data for RTK positioning: a five-system analysis / Andreas Brack in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : GLONASS FDMA data for RTK positioning: a five-system analysis Type de document : Article/Communication Auteurs : Andreas Brack, Auteur ; Benjamin Männel, Auteur ; Harald Schuh, Auteur Année de publication : 2021 Article en page(s) : n° 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] ambiguïté entière
[Termes descripteurs IGN] CDMA
[Termes descripteurs IGN] fréquence
[Termes descripteurs IGN] modèle ionosphérique
[Termes descripteurs IGN] positionnement cinématique en temps réel
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] résolution d'ambiguïté
[Termes descripteurs IGN] satellite GLONASS
[Termes descripteurs IGN] signal GLONASSRésumé : (auteur) The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning precision and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions. Numéro de notice : A2021-009 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01043-5 date de publication en ligne : 24/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01043-5 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96299
in GPS solutions > vol 25 n° 1 (January 2021) . - n° 9[article]Reference system origin and scale realization within the future GNSS constellation “Kepler” / Susanne Glaser in Journal of geodesy, vol 94 n° 12 (December 2020)
![]()
[article]
Titre : Reference system origin and scale realization within the future GNSS constellation “Kepler” Type de document : Article/Communication Auteurs : Susanne Glaser, Auteur ; Grzegorz Michalak, Auteur ; Benjamin Männel, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] centre de phase
[Termes descripteurs IGN] constellation Galileo
[Termes descripteurs IGN] constellation GNSS
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] géocentre
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] Kepler, Johannes
[Termes descripteurs IGN] orbite basse
[Termes descripteurs IGN] orbite terrestre
[Termes descripteurs IGN] orbitographieRésumé : (auteur) Currently, Global Navigation Satellite Systems (GNSS) do not contribute to the realization of origin and scale of combined global terrestrial reference frame (TRF) solutions due to present system design limitations. The future Galileo-like medium Earth orbit (MEO) constellation, called “Kepler”, proposed by the German Aerospace Center DLR, is characterized by a low Earth orbit (LEO) segment and the innovative key features of optical inter-satellite links (ISL) delivering highly precise range measurements and of optical frequency references enabling a perfect time synchronization within the complete constellation. In this study, the potential improvements of the Kepler constellation on the TRF origin and scale are assessed by simulations. The fully developed Kepler system allows significant improvements of the geocenter estimates (realized TRF origin in long-term). In particular, we find improvements by factors of 43 for the Z and of 8 for the X and Y component w. r. t. a contemporary MEO-only constellation. Furthermore, the Kepler constellation increases the reliability due to a complete de-correlation of the geocenter coordinates and the orbit parameters related to the solar radiation pressure modeling (SRP). However, biases in SRP modeling cause biased geocenter estimates and the ISL of Kepler can only partly compensate this effect. The realized scale enabling all Kepler features improves by 34% w. r. t. MEO-only. The dependency of the estimated satellite antenna phase center offsets (PCOs) upon the underlying TRF impedes a scale realization by GNSS. In order to realize the network scale with 1 mm accuracy, the PCOs have to be known within 2 cm for the MEO and 4 mm for the LEO satellites. Independently, the scale can be realized by estimating the MEO PCOs and by simultaneously fixing the LEO PCOs. This requires very accurate LEO PCOs; the simulations suggest them to be smaller than 1 mm in order to keep scale changes below 1 mm. Numéro de notice : A2020-736 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01441-0 date de publication en ligne : 19/11/2020 En ligne : https://doi.org/1https://doi.org/10.1007/s00190-020-01441-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96352
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 117[article]Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks / Wen Huang in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks Type de document : Article/Communication Auteurs : Wen Huang, Auteur ; Benjamin Männel, Auteur ; Pierre Sakic-Kieffer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes descripteurs IGN] modèle d'orbite
[Termes descripteurs IGN] orbite basse
[Termes descripteurs IGN] orbite précise
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] orbitographie par GNSS
[Termes descripteurs IGN] récepteur GPS
[Termes descripteurs IGN] station GPSRésumé : (auteur) The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs. Numéro de notice : A2020-630 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01424-1 date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01424-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96049
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 13 p.[article]Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) / Benjamin Männel (2018)
![]()
Titre : Recent activities of the GGOS standing committee on Performance simulations and Architectural Trade-Offs (PLATO) Type de document : Chapitre/Contribution Auteurs : Benjamin Männel, Auteur ; Daniela Thaller, Auteur ; Markus Rothacher, Auteur ; Johannes Böhm, Auteur ; Jurgen Müller, Auteur ; Susanne Glaser, Auteur ; Rolf Dach, Auteur ; Richard Biancale, Auteur ; Mathis Blossfeld, Auteur ; Alexander Kehm, Auteur ; Iván Herrera Pinzón, Auteur ; Franz Hofmann, Auteur ; Florian Andritsch, Auteur ; David Coulot , Auteur ; Arnaud Pollet
, Auteur
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2018 Importance : pp 1 - 4 Langues : Anglais (eng) Résumé : (auteur) The Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO) was established by the Bureau of Networks and Observations of the Global Geodetic Observing System (GGOS) in order to support – by prior performance analysis – activities to reach the GGOS requirements for the accuracy and stability of the terrestrial reference frame. Based on available data sets and simulated observations for further stations and satellite missions the committee studies the impact of technique-specific improvements, new stations, and additional co-locations in space on reference frame products. Simulation studies carried out so far show the importance of the individual station performance and additional stations for satellite laser ranging, the perspectives for lunar laser ranging assuming additional stations and reflectors, and the significant impact of the new VGOS antennas. Significant progress is achieved in processing VLBI satellite tracking data. New insights in technique-specific error sources were derived based on real data from short baselines. Regarding co-location in space PLATO members confirmed that E-GRASP could fulfill the GGOS requirements with reaching a geocenter and scale accuracy and stability of 1 mm and 0.1 mm/year, respectively. Numéro de notice : H2018-006 Affiliation des auteurs : LaSTIG LAREG+Ext (2012-mi2018) Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1007/1345_2018_30 date de publication en ligne : 11/04/2018 En ligne : http://dx.doi.org/10.1007/1345_2018_30 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90562 Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS / Benjamin Männel in Journal of geodesy, vol 90 n° 2 (February 2016)
![]()
[article]
Titre : Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS Type de document : Article/Communication Auteurs : Benjamin Männel, Auteur ; Markus Rothacher, Auteur Année de publication : 2016 Article en page(s) : pp 189-203 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] co-positionnement
[Termes descripteurs IGN] correction ionosphérique
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] positionnement par ITGB
[Termes descripteurs IGN] poursuite de satellite
[Termes descripteurs IGN] propagation ionosphériqueRésumé : (auteur) Tracking L-band signals of GNSS satellites by radio telescopes became a new observation type in recent years and will be used to improve reference system realizations and links between Earth- and space-fixed frames. First successful test observations were done, with the drawback of being single-frequency only. In order to correct the ionospheric delay by using GNSS phase observations from co-located receivers, the L4R approach was developed. Based on residuals derived by a least-squares processing of the GNSS geometry-free linear combination corresponding corrections could be derived. As a first validation step L4R corrections were applied to GNSS L1 data analysis. Station coordinate repeatibilities at the 1-cm level were obtained for baselines of a few thousand kilometers. Comparing the derived delay corrections to VLBI ionospheric delays for quasars located in same directions, differences with a standard deviation of 2.2 TECU could be achieved. Numéro de notice : A2016-035 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0865-6 date de publication en ligne : 27/10/2015 En ligne : https://doi.org/10.1007/s00190-015-0865-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79512
in Journal of geodesy > vol 90 n° 2 (February 2016) . - pp 189-203[article]Permalink