Détail de l'auteur
Auteur Yi-Hsing Tseng |
Documents disponibles écrits par cet auteur (7)



Advancement of close range photogrammetry with a portable panoramic image mapping system (PPIMS) / Yung-Chuan Chen in Photogrammetric record, vol 33 n° 162 (June 2018)
![]()
[article]
Titre : Advancement of close range photogrammetry with a portable panoramic image mapping system (PPIMS) Type de document : Article/Communication Auteurs : Yung-Chuan Chen, Auteur ; Yi-Hsing Tseng, Auteur Année de publication : 2018 Article en page(s) : pp 196 - 216 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] caméra numérique
[Termes IGN] compensation par faisceaux
[Termes IGN] élément d'orientation externe
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] image panoramique
[Termes IGN] positionnement par GPS
[Termes IGN] système de numérisation mobileRésumé : (Auteur) Mobile mapping technologies have contributed to close range photogrammetry becoming an efficient method for a wide range of applications over the last two decades. Advancements have included the integration of multi‐camera images and georeferencing data collected with a mobile mapping system (MMS). This paper proposes the use of a portable panoramic image mapping system (PPIMS), which is a specially designed platform equipped with eight cameras to capture panoramic images and a global navigation satellite system (GNSS) receiver (or a prism reflector) for positioning. A rigorous calibration procedure is developed for PPIMS, as well as a bundle adjustment method to solve for the platform exterior orientation parameters (EOPs) which then allows the image EOPs to be calculated. Experimental results demonstrate that PPIMS mapping accuracy can be better than 13 mm, making it comparable with traditional methods but much more efficient in the measuring process. Numéro de notice : A2018-224 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12236 Date de publication en ligne : 10/04/2018 En ligne : https://doi.org/10.1111/phor.12236 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90044
in Photogrammetric record > vol 33 n° 162 (June 2018) . - pp 196 - 216[article]Bundle adjustment of spherical images acquired with a portable panoramic image mapping system (PPIMS) / Yi-Hsing Tseng in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 12 (December 2016)
![]()
[article]
Titre : Bundle adjustment of spherical images acquired with a portable panoramic image mapping system (PPIMS) Type de document : Article/Communication Auteurs : Yi-Hsing Tseng, Auteur ; Yung-Chuan Chen, Auteur ; Kuan-Ying Lin, Auteur Année de publication : 2016 Article en page(s) : pp 935 - 943 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] antenne GPS
[Termes IGN] compensation par faisceaux
[Termes IGN] image panoramique
[Termes IGN] prise de vue terrestre
[Termes IGN] spatiotriangulation
[Termes IGN] système de numérisation mobileRésumé : (auteur) Thanks to the development of mobile mapping technologies, close-range photogrammetry (CRP) has advanced to be an efficient mapping method for a variety of applications. A compact CRP system equipped with multiple cameras and a GPS receiver is one of those advanced portable mapping systems. A portable panoramic image mapping system (PPIMS) was specially designed to capture panoramic images with eight cameras and to obtain the position of image station with a GPS receiver. A PPIMS can be considered as a panoramic CRP system. The coordinates of an object point can be determined by the intersection of panoramic image points. For the implementation, we propose a new concept of photogrammetry by using panoramic images. Eight images captured by PPIMS forms a spherical panorama image (SPI). Instead of using the original images, PPIMS SPIs are then used for photogrammetric triangulation and mapping. Under this circumstance, one SPI is formed for each station, and it is associated with only one set of exterior orientation (EO) parameters. Traditional collinearity equations are not applicable to SPI triangulation and mapping. Therefore, a novel bundle adjustment algorithm is proposed to solve EO of multi-station SPIs. Because PPIMS SPIs are not ideal SPIs, a correction scheme was also developed to correct the imperfect geometry of PPIMS SPI. Two test studies were performed for the data collected at a campus test field of National Cheng Kung University (NCKU) and at a historical site of Tainan. Both cases demonstrate the feasibility of SPI bundle adjustment and applying corrections for PPIMS SPIs necessary for effective for bundle adjustment. Furthermore, the experiment's results also confirm that SPIs can replace original images for PPIMS triangulation. Numéro de notice : A2016-982 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.82.12.935 En ligne : https://doi.org/10.14358/PERS.82.12.935 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83698
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 12 (December 2016) . - pp 935 - 943[article]A wavelet-based echo detector for waveform LiDAR data / Cheng-Kai Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
![]()
[article]
Titre : A wavelet-based echo detector for waveform LiDAR data Type de document : Article/Communication Auteurs : Cheng-Kai Wang, Auteur ; Yi-Hsing Tseng, Auteur ; Chi-Kuei Wang, Auteur Année de publication : 2016 Article en page(s) : pp 757 - 769 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] forme d'onde
[Termes IGN] modèle numérique de surface
[Termes IGN] onde lidar
[Termes IGN] ondelette
[Termes IGN] semis de points
[Termes IGN] signal laserRésumé : (Auteur) This paper presents a wavelet-based (WB) echo detector that can recover the echoes missed by a light detection and ranging (LiDAR) system via on-the-fly detection. An on-the-fly detection method normally utilizes a simple threshold (TH) to register a target point. Points that belong to weak and/or overlapping echoes are much complicated and are easily missed by TH approaches. The proposed detector based on wavelet transformation is robust to noise and is capable of resolving overlapping echoes. It is thus expected to be good at handling missing echoes. A simulated waveform data set and a real waveform data set of a forest area were both used in this paper. The simulated waveform data were utilized to compare the proposed detector with zero crossing (ZC) and Gaussian decomposition (GD) detectors in terms of their ability to deal with weak or overlapping echoes. The real waveform data set acquired from Leica ALS60 was used to demonstrate a WB algorithm for exploring the missing echoes. Experiments using the simulated data showed that the WB and GD detectors are superior to the ZC detector in finding overlapping echoes. The WB algorithm performs well when dealing with overlapping echoes with a low signal-to-noise ratio. Experiments using the real waveform data show that 31.5% additional weak or overlapping echoes can be detected by the WB detector compared with the point cloud provided by the system. With such additional points, the mean and root-mean-square errors of the digital elevation model differences can be improved from 0.72 and 0.79 m to 0.16 and 0.59 m, respectively. Numéro de notice : A2016-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2465148 En ligne : https://doi.org/10.1109/TGRS.2015.2465148 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79999
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 2 (February 2016) . - pp 757 - 769[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016021 SL Revue Centre de documentation Revues en salle Disponible Incremental segmentation of lidar point clouds with an octree-structured voxel space / M. Wang in Photogrammetric record, vol 26 n° 133 (March - May 2011)
![]()
[article]
Titre : Incremental segmentation of lidar point clouds with an octree-structured voxel space Type de document : Article/Communication Auteurs : M. Wang, Auteur ; Yi-Hsing Tseng, Auteur Année de publication : 2011 Article en page(s) : pp 32 - 57 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] coplanarité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] octree
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (Auteur) Lidar (light detection and ranging) data implicitly contains abundant three-dimensional spatial information. The segmentation of lidar point clouds is the key procedure for transforming implicit spatial information into explicit spatial information. Common criteria used for point cloud segmentation are proximity and coherence of point distribution. An effective segmentation algorithm may apply various steps or combinations of criteria depending on the application. This paper proposes a four-step segmentation method for lidar point clouds to deliver incremental segmentation results. Segmentation results of each step can provide the fundamental data for the next step. In the first step, the input point cloud is organised into an octree-structured voxel space, in which the point neighbourhood is established. In the second step, connected voxels which are not empty are grouped to obtain grouped points based on proximity. The third step is a coplanar point segmentation based on both coherence and proximity, which was performed on each point group obtained in the second step. Finally, neighbouring coplanar point groups are merged into “co-surface” point groups based on the criteria of plane connection and intersection. This scheme enables an incremental retrieval and analysis of a large lidar data-set. Experimental results demonstrate the effectiveness of the segmentation algorithm in handling both airborne and terrestrial lidar data. It is anticipated that the incremental segmentation results will be useful for object modelling using lidar data. Numéro de notice : A2011-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/j.1477-9730.2011.00624.x Date de publication en ligne : 16/03/2011 En ligne : https://doi.org/10.1111/j.1477-9730.2011.00624.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30858
in Photogrammetric record > vol 26 n° 133 (March - May 2011) . - pp 32 - 57[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 106-2011011 RAB Revue Centre de documentation En réserve L003 Disponible Automatic segmentation of Lidar data into coplanar point clusters using an octree-based split-and-merge algorithm / M. Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 4 (April 2010)
![]()
[article]
Titre : Automatic segmentation of Lidar data into coplanar point clusters using an octree-based split-and-merge algorithm Type de document : Article/Communication Auteurs : M. Wang, Auteur ; Yi-Hsing Tseng, Auteur Année de publication : 2010 Article en page(s) : pp 407 - 420 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] modélisation 3D
[Termes IGN] octree
[Termes IGN] segmentation
[Termes IGN] segmentation en plan
[Termes IGN] semis de pointsRésumé : (Auteur) Lidar (light detection and ranging) point cloud data contain abundant three-dimensional (3D) information. Dense distribution of scanned points on object surfaces prominently implies surface features. Particularly, plane features commonly appear in a typical lidar dataset of artificial structures. To explore implicitly contained spatial information, this study developed an automatic scheme to segment a lidar point cloud dataset into coplanar point clusters. The central mechanism of the proposed method is a split-and-merge segmentation based on an octree structure. Plane fitting serves as an engine in the mechanism that evaluates how well a group of points fits to a plane. Segmented coplanar points and derived parameters of their best-fit plane are obtained through the process. This paper also provides algorithms to derive various geometric properties of segmented coplanar points, including inherent properties of a plane, intersections of planes, and properties of point distribution on a plane. Several successful cases of handling airborne and terrestrial lidar data as well as a combination of the two are demonstrated. This method should improve the efficiency of object modelling using lidar data. Copyright ASPRS Numéro de notice : A2010-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.76.4.407 En ligne : https://doi.org/10.14358/PERS.76.4.407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30317
in Photogrammetric Engineering & Remote Sensing, PERS > vol 76 n° 4 (April 2010) . - pp 407 - 420[article]Semiautomated building extraction based on CSG model-image fitting / Yi-Hsing Tseng in Photogrammetric Engineering & Remote Sensing, PERS, vol 69 n° 2 (February /2003)
PermalinkPermalink