Détail de l'auteur
Auteur Antonio J. Plaza |
Documents disponibles écrits par cet auteur (9)



Urban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
![]()
[article]
Titre : Urban impervious surface estimation from remote sensing and social data Type de document : Article/Communication Auteurs : Yan Yu, Auteur ; Jun Li, Auteur ; Changyu Zhu, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2018 Article en page(s) : pp 771 - 780 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] base de données routières
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] données vectorielles
[Termes IGN] Google Maps
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] régression multiple
[Termes IGN] réseau routier
[Termes IGN] surface imperméable
[Termes IGN] zone urbaineRésumé : (auteur) We propose an inspiring approach for accurate impervious surface estimation based on the integration of remote sensing and social data. The proposed approach exploits the strengths of two kind of heterogeneous features, i.e., physical features and social features, where the former ones are derived by a morphological attribute profiles-guided spectral mixture analysis model using remote sensing imagery, and the latter ones are obtained from the normalized kernel density of point of interest and vector road datasets. These two features are then integrated using a multivariable linear regression model to estimate impervious surfaces. The proposed method has been tested in the main urban area of Guangzhou, China, in pixel level and parcel level, respectively. The obtained results, with the overall RMSE of 10.98% and 10.90% for pixel level and parcel level, respectively, demonstrate the good performance of integrating remote sensing imagery and social data for mapping of urban impervious surface. Numéro de notice : A2018-549 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.12.771 Date de publication en ligne : 01/12/2018 En ligne : https://doi.org/10.14358/PERS.84.12.771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91622
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 12 (December 2018) . - pp 771 - 780[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018121 RAB Revue Centre de documentation En réserve 3L Disponible A new deep convolutional neural network for fast hyperspectral image classification / Mercedes Eugenia Paoletti in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
![]()
[article]
Titre : A new deep convolutional neural network for fast hyperspectral image classification Type de document : Article/Communication Auteurs : Mercedes Eugenia Paoletti, Auteur ; Juan Mario Haut, Auteur ; Javier Plaza, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2018 Article en page(s) : pp 120 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques. Numéro de notice : A2018-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.021 Date de publication en ligne : 06/12/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91235
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 120 - 147[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018113 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A novel preunmixing framework for efficient detection of linear mixtures in hyperspectral images / Andrea Marinoni in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
![]()
[article]
Titre : A novel preunmixing framework for efficient detection of linear mixtures in hyperspectral images Type de document : Article/Communication Auteurs : Andrea Marinoni, Auteur ; Antonio J. Plaza, Auteur ; Paolo Gamba, Auteur Année de publication : 2017 Article en page(s) : pp 4325 - 4333 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] attribut géomètrique
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)Résumé : (Auteur) In order to provide reliable information about the instantaneous field of view considered in hyperspectral images through spectral unmixing, understanding the kind of mixture that occurs over each pixel plays a crucial role. In this paper, in order to detect nonlinear mixtures, a method for fast identification of linear mixtures is introduced. The proposed method does not need statistical information and performs an a priori test on the spectral linearity of each pixel. It uses standard least squares optimization to achieve estimates of the likelihood of occurrence of linear combinations of endmembers by taking advantage of the geometrical properties of hyperspectral signatures. Experimental results on both real and synthetic data sets show that the aforesaid algorithm is actually able to deliver a reliable and thorough assessment of the kind of mixtures present in the pixels of the scene. Numéro de notice : A2017-494 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691319 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691319 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86424
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4325 - 4333[article]Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification / Lin He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
![]()
[article]
Titre : Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification Type de document : Article/Communication Auteurs : Lin He, Auteur ; Jun Li, Auteur ; Antonio J. Plaza, Auteur ; Yuanqing Li, Auteur Année de publication : 2017 Article en page(s) : pp 1381 - 1395 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] filtre de Gabor
[Termes IGN] filtre passe-bas
[Termes IGN] image hyperspectrale
[Termes IGN] performanceRésumé : (Auteur) Spectral-spatial classification of remotely sensed hyperspectral images has attracted a lot of attention in recent years. Although Gabor filtering has been used for feature extraction from hyperspectral images, its capacity to extract relevant information from both the spectral and the spatial domains of the image has not been fully explored yet. In this paper, we present a new discriminative low-rank Gabor filtering (DLRGF) method for spectral-spatial hyperspectral image classification. A main innovation of the proposed approach is that our implementation is accomplished by decomposing the standard 3-D spectral-spatial Gabor filter into eight subfilters, which correspond to different combinations of low-pass and bandpass single-rank filters. Then, we show that only one of the subfilters (i.e., the one that performs low-pass spatial filtering and bandpass spectral filtering) is actually appropriate to extract suitable features based on the characteristics of hyperspectral images. This allows us to perform spectral-spatial classification in a highly discriminative and computationally efficient way, by significantly decreasing the computational complexity (from cubic to linear order) compared with the 3-D spectral-spatial Gabor filter. In order to theoretically prove the discriminative ability of the selected subfilter, we derive an overall classification risk bound to evaluate the discriminating abilities of the features provided by the different subfilters. Our experimental results, conducted using different hyperspectral images, indicate that the proposed DLRGF method exhibits significant improvements in terms of classification accuracy and computational performance when compared with the 3-D spectral-spatial Gabor filter and other state-of-the-art spectral-spatial classification methods. Numéro de notice : A2017-154 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623742 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623742 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84689
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1381 - 1395[article]Robust collaborative nonnegative matrix factorization for hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
![]()
[article]
Titre : Robust collaborative nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Jun Li, Auteur ; José M. Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur ; Lin Liu, Auteur Année de publication : 2016 Article en page(s) : pp 6076 - 6090 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] signature spectraleRésumé : (auteur) Spectral unmixing is an important technique for remotely sensed hyperspectral data exploitation. It amounts to identifying a set of pure spectral signatures, which are called endmembers, and their corresponding fractional, draftrulesabun-dances in each pixel of the hyperspectral image. Over the last years, different algorithms have been developed for each of the three main steps of the spectral unmixing chain: 1) estimation of the number of endmembers in a scene; 2) identification of the spectral signatures of the endmembers; and 3) estimation of the fractional abundance of each endmember in each pixel of the scene. However, few algorithms can perform all the stages involved in the hyperspectral unmixing process. Such algorithms are highly desirable to avoid the propagation of errors within the chain. In this paper, we develop a new algorithm, which is termed robust collaborative nonnegative matrix factorization (R-CoNMF), that can perform the three steps of the hyperspectral unmixing chain. In comparison with other conventional methods, R-CoNMF starts with an overestimated number of endmembers and removes the redundant endmembers by means of collaborative regularization. Our experimental results indicate that the proposed method provides better or competitive performance when compared with other widely used methods. Numéro de notice : A2016-868 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2580702 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2580702 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83025
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 6076 - 6090[article]Thin cloud removal based on signal transmission principles and spectral mixture analysis / Meng Xu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
PermalinkHYCA: A new technique for hyperspectral compressive sensing / G. Martin in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
PermalinkCollaborative sparse regression for hyperspectral unmixing / Marian-Daniel Iordache in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
PermalinkTotal variation spatial regularization for sparse hyperspectral unmixing / M. Iordache in IEEE Transactions on geoscience and remote sensing, vol 50 n° 11 Tome 1 (November 2012)
Permalink