Détail de l'auteur
Auteur Konrad Schindler |
Documents disponibles écrits par cet auteur (12)



Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence / Sidi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
![]()
[article]
Titre : Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence Type de document : Article/Communication Auteurs : Sidi Wu, Auteur ; Konrad Schindler, Auteur ; Magnus Heitzler, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 199 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte ancienne
[Termes IGN] cartographie historique
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] données anciennes
[Termes IGN] matrice de co-occurrence
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] vision par ordinateurRésumé : (auteur) Historical maps depict past states of the Earth’s surface and make it possible to trace the natural or anthropogenic evolution of geographic objects back through time. However, the state of the depicted reality is not the only source of change: maps of varying age can differ in terms of graphical design, and also in terms of storage conditions, physical ageing of pigments, and the scanning process for digitization. Consequently, a computer vision system learned from a specific (source) map series will often not generalize well to older or newer (target) maps, calling for domain adaptation. In the present paper we examine – to our knowledge for the first time – domain adaptation for segmenting historical maps. We argue that for geo-spatial data like maps, which are geo-localized by definition, the spatial co-occurrence of geographical objects provides a supervision signal for domain adaptation. Since only a subset of all mapped objects co-occur, and even those are not perfectly aligned due to both real topographic changes and variations in map generalization/production, they only provide weak supervision — still they can bring a substantial benefit over completely unsupervised domain adaptation methods. The core of our proposed method is a novel self-supervised co-occurrence network that detects co-occurring objects across maps (specifically, domains) with a novel loss function that allows for object changes and spatial misalignment. Experiments show that, for the task of segmenting hydrological objects such as rivers, lakes and wetlands, our system significantly outperforms two state-of-art baselines, even with limited supervision (e.g., 5%). The source code is publicly available at https://github.com/sian-wusidi/spatialcooccurrence. Numéro de notice : A2023-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.01.021 Date de publication en ligne : 14/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.01.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102804
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 199 - 211[article]Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network / Charis Lanaras in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
![]()
[article]
Titre : Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network Type de document : Article/Communication Auteurs : Charis Lanaras, Auteur ; José Bioucas-Dias, Auteur ; Silvano Galliani, Auteur ; Emmanuel Baltsavias, Auteur ; Konrad Schindler, Auteur Année de publication : 2018 Article en page(s) : pp 305 - 319 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] échantillonnage de données
[Termes IGN] erreur moyenne quadratique
[Termes IGN] image à basse résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) The Sentinel-2 satellite mission delivers multi-spectral imagery with 13 spectral bands, acquired at three different spatial resolutions. The aim of this research is to super-resolve the lower-resolution (20 m and 60 m Ground Sampling Distance – GSD) bands to 10 m GSD, so as to obtain a complete data cube at the maximal sensor resolution. We employ a state-of-the-art convolutional neural network (CNN) to perform end-to-end upsampling, which is trained with data at lower resolution, i.e., from 40 20 m, respectively 360 60 m GSD. In this way, one has access to a virtually infinite amount of training data, by downsampling real Sentinel-2 images. We use data sampled globally over a wide range of geographical locations, to obtain a network that generalises across different climate zones and land-cover types, and can super-resolve arbitrary Sentinel-2 images without the need of retraining. In quantitative evaluations (at lower scale, where ground truth is available), our network, which we call DSen2, outperforms the best competing approach by almost 50% in RMSE, while better preserving the spectral characteristics. It also delivers visually convincing results at the full 10 m GSD. Numéro de notice : A2018-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.09.018 Date de publication en ligne : 21/10/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.09.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91554
in ISPRS Journal of photogrammetry and remote sensing > vol 146 (December 2018) . - pp 305 - 319[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018131 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018133 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2018132 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net / Timo Hackel in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
![]()
[article]
Titre : Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Nikolay Savinov, Auteur ; Lubor Ladicky, Auteur ; Konrad Schindler, Auteur ; Marc Pollefeys, Auteur Année de publication : 2018 Article en page(s) : pp 297 - 308 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we review current state-of-the-art in 3D point cloud classification, present a new 3D point cloud classification benchmark data set of single scans with over four billion manually labeled points, and discuss first available results on the benchmark. Much of the stunning recent progress in 2D image interpretation can be attributed to the availability of large amounts of training data, which have enabled the (supervised) learning of deep neural networks. With the data set presented in this paper, we aim to boost the performance of CNNs also for 3D point cloud labeling. Our hope is that this will lead to a breakthrough of deep learning also for 3D (geo-) data. The semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains eight semantic classes and covers a wide range of urban outdoor scenes, including churches, streets, railroad tracks, squares, villages, soccer fields, and castles. We describe our labeling interface and show that, compared to those already available to the research community, our data set provides denser and more complete point clouds, with a much higher overall number of labeled points. We further provide descriptions of baseline methods and of the first independent submissions, which are indeed based on CNNs, and already show remarkable improvements over prior art. We hope that semantic3D.net will pave the way for deep learning in 3D point cloud analysis, and for 3D representation learning in general. Numéro de notice : A2018-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.5.297 Date de publication en ligne : 01/05/2018 En ligne : https://doi.org/10.14358/PERS.84.5.297 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89795
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 5 (mai 2018) . - pp 297 - 308[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018051 RAB Revue Centre de documentation En réserve 3L Disponible From Google Maps to a fine-grained catalog of street trees / Steve Branson in ISPRS Journal of photogrammetry and remote sensing, vol 135 (January 2018)
![]()
[article]
Titre : From Google Maps to a fine-grained catalog of street trees Type de document : Article/Communication Auteurs : Steve Branson, Auteur ; Jan Dirk Wegner, Auteur ; David Hall, Auteur ; Nico Lang, Auteur ; Konrad Schindler, Auteur ; Pietro Perona, Auteur Année de publication : 2018 Article en page(s) : pp 13 - 30 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] arbre urbain
[Termes IGN] architecture pipeline (processeur)
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] Google Maps
[Termes IGN] inventaire de la végétation
[Termes IGN] photo-interprétation assistée par ordinateur
[Termes IGN] réseau neuronal convolutif
[Termes IGN] villeRésumé : (Auteur) Up-to-date catalogs of the urban tree population are of importance for municipalities to monitor and improve quality of life in cities. Despite much research on automation of tree mapping, mainly relying on dedicated airborne LiDAR or hyperspectral campaigns, tree detection and species recognition is still mostly done manually in practice. We present a fully automated tree detection and species recognition pipeline that can process thousands of trees within a few hours using publicly available aerial and street view images of Google MapsTM. These data provide rich information from different viewpoints and at different scales from global tree shapes to bark textures. Our work-flow is built around a supervised classification that automatically learns the most discriminative features from thousands of trees and corresponding, publicly available tree inventory data. In addition, we introduce a change tracker that recognizes changes of individual trees at city-scale, which is essential to keep an urban tree inventory up-to-date. The system takes street-level images of the same tree location at two different times and classifies the type of change (e.g., tree has been removed). Drawing on recent advances in computer vision and machine learning, we apply convolutional neural networks (CNN) for all classification tasks. We propose the following pipeline: download all available panoramas and overhead images of an area of interest, detect trees per image and combine multi-view detections in a probabilistic framework, adding prior knowledge; recognize fine-grained species of detected trees. In a later, separate module, track trees over time, detect significant changes and classify the type of change. We believe this is the first work to exploit publicly available image data for city-scale street tree detection, species recognition and change tracking, exhaustively over several square kilometers, respectively many thousands of trees. Experiments in the city of Pasadena, California, USA show that we can detect >70% of the street trees, assign correct species to >80% for 40 different species, and correctly detect and classify changes in >90% of the cases. Numéro de notice : A2018-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.008 Date de publication en ligne : 20/11/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89426
in ISPRS Journal of photogrammetry and remote sensing > vol 135 (January 2018) . - pp 13 - 30[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018011 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2018013 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Joint classification and contour extraction of large 3D point clouds / Timo Hackel in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
![]()
[article]
Titre : Joint classification and contour extraction of large 3D point clouds Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Konrad Schindler, Auteur Année de publication : 2017 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] classification dirigée
[Termes IGN] compréhension de l'image
[Termes IGN] densité des points
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours.
Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with
points.Numéro de notice : A2017-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86476
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 231 - 245[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017083 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt III-3 - July 2016 - [actes] XXIII ISPRS Congress, Commission III, 12–19 July 2016, Prague, Czech Republic (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Lena Halounova
PermalinkSimultaneous detection and tracking of pedestrian from panoramic laser scanning data / Wen Xiao in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-3 (July 2016)
PermalinkRecent developments in large-scale tie-point matching / Wilfried Hartmann in ISPRS Journal of photogrammetry and remote sensing, vol 115 (May 2016)
PermalinkStreet-side vehicle detection, classification and change detection using mobile laser scanning data / Wen Xiao in ISPRS Journal of photogrammetry and remote sensing, vol 114 (April 2016)
PermalinkPermalinkII-3 - September 2014 - [actes] ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Konrad Schindler
PermalinkAutomatic detection and tracking of pedestrians from a moving stereo rig / Konrad Schindler in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 6 (November - December 2010)
Permalink