Détail de l'auteur
Auteur Meng Lu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis Type de document : Article/Communication Auteurs : Jiong Wang, Auteur ; Olivier Schmitz, Auteur ; Meng Lu, Auteur ; Derek Karssenberg, Auteur Année de publication : 2020 Article en page(s) : pp 76 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] mise à l'échelle
[Termes IGN] Pays-Bas
[Termes IGN] radiance
[Termes IGN] réduction
[Termes IGN] température de surface
[Termes IGN] variation diurneRésumé : (Auteur) Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal resolution, land surface temperature (LST) dense in both space and time can only be obtained through downscaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only feasible in an ideal situation, where land surface factors as LST predictors are continuously available for downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations. Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery. First, an optimal number of thermal components are extracted at fine resolution through the application of the non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and thermal components at coarse resolution, the LST change load of each component can then be obtained at the coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates temperature over major land types and captures both seasonal and diurnal LST dynamics. Numéro de notice : A2020-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.014 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94580
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 76 - 89[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt CNN-based dense image matching for aerial remote sensing images / Shunping Ji in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : CNN-based dense image matching for aerial remote sensing images Type de document : Article/Communication Auteurs : Shunping Ji, Auteur ; Jin Liu, Auteur ; Meng Lu, Auteur Année de publication : 2019 Article en page(s) : pp 415 - 424 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] couple stéréoscopique
[Termes IGN] image aérienne
[Termes IGN] Munich
[Termes IGN] réseau neuronal convolutif
[Termes IGN] Stuttgart
[Termes IGN] ville
[Termes IGN] zone urbaineRésumé : (Auteur) Dense stereo matching plays a key role in 3D reconstruction. The capability of using deep learning in the stereo matching of remote sensing data is currently uncertain. This article investigated the application of deep learning–based stereo methods in aerial image series and proposed a deep learning–based multi-view dense matching framework. First, we applied three typical convolutional neural network models, MC-CNN, GC-Net, and DispNet, to aerial stereo pairs and compared the results with those of the SGM and a commercial software, SURE. Second, on different data sets, the generalization ability of each network is evaluated by using direct transfer learning with models pretrained on other data sets and by fine-tuning with a small number of target training data. Third, we present a deep learning–based multi-view dense matching framework where the multi-view geometry is introduced to further refine matching results. Three sets of aerial images as the main data sets and two open-source sets of street images as auxiliary data sets are used for testing. Experiments show that, first, the performance of deep learning–based stereo methods is slightly better than traditional methods. Second, both the GC-Net and the MC-CNN have demonstrated good generalization ability and can obtain satisfactory results on aerial images using a pretrained model on several available stereo benchmarks. Third, multi-view geometry constraints can further improve the performance of deep learning–based methods, which is better than that of the multi-view–based SGM and SURE. Numéro de notice : A2019-246 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.415 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.415 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 415 - 424[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series / Meng Lu in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)
[article]
Titre : Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series Type de document : Article/Communication Auteurs : Meng Lu, Auteur ; Edzer J. Pebesma, Auteur ; Alber Sanchez, Auteur ; Jan Verbesselt, Auteur Année de publication : 2016 Article en page(s) : pp 227 – 236 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] Brésil
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] points de rupture
[Termes IGN] série temporelleRésumé : (auteur) Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis. Numéro de notice : A2016-586 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.03.007 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.03.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81727
in ISPRS Journal of photogrammetry and remote sensing > vol 117 (July 2016) . - pp 227 – 236[article]