Détail de l'auteur
Auteur Jianga Shang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Indoor mapping and modeling by parsing floor plan images / Yijie Wu in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
[article]
Titre : Indoor mapping and modeling by parsing floor plan images Type de document : Article/Communication Auteurs : Yijie Wu, Auteur ; Jianga Shang, Auteur ; Pan Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1205 - 1231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte d'intérieur
[Termes IGN] chevauchement
[Termes IGN] CityGML
[Termes IGN] construction
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégrité topologique
[Termes IGN] mur
[Termes IGN] optimisation spatiale
[Termes IGN] positionnement en intérieur
[Termes IGN] vectorisationRésumé : (auteur) A large proportion of indoor spatial data is generated by parsing floor plans. However, a mature and automatic solution for generating high-quality building elements (e.g., walls and doors) and space partitions (e.g., rooms) is still lacking. In this study, we present a two-stage approach to indoor mapping and modeling (IMM) from floor plan images. The first stage vectorizes the building elements on the floor plan images and the second stage repairs the topological inconsistencies between the building elements, separates indoor spaces, and generates indoor maps and models. To reduce the shape complexity of indoor boundary elements, i.e., walls and openings, we harness the regularity of the boundary elements and extract them as rectangles in the first stage. Furthermore, to resolve the overlaps and gaps of the vectorized results, we propose an optimization model that adjusts the rectangle vertex coordinates to conform to the topological constraints. Experiments demonstrate that our approach achieves a considerable improvement in room detection without conforming to Manhattan World Assumption. Our approach also outputs instance-separate walls with consistent topology, which enables direct modeling into Industry Foundation Classes (IFC) or City Geography Markup Language (CityGML). Numéro de notice : A2021-385 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1781130 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1781130 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97642
in International journal of geographical information science IJGIS > vol 35 n° 6 (June 2021) . - pp 1205 - 1231[article]APFiLoc: An Infrastructure-Free Indoor Localization method fusing smartphone inertial sensors, landmarks and map information / Jianga Shang in Sensors, vol 15 n° 10 (October 2015)
[article]
Titre : APFiLoc: An Infrastructure-Free Indoor Localization method fusing smartphone inertial sensors, landmarks and map information Type de document : Article/Communication Auteurs : Jianga Shang, Auteur ; Fuqiang Gu, Auteur ; Xuke Hu, Auteur ; Allison Kealy, Auteur Année de publication : 2015 Article en page(s) : pp 27251 - 27272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] centrale inertielle
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] information cartographique
[Termes IGN] information complexe
[Termes IGN] point de repère
[Termes IGN] positionnement en intérieur
[Termes IGN] téléphone intelligentRésumé : (auteur) The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc—a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points. Numéro de notice : A2015--043 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/s151027251 En ligne : http://dx.doi.org/10.3390/s151027251 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81864
in Sensors > vol 15 n° 10 (October 2015) . - pp 27251 - 27272[article]