Détail de l'auteur
Auteur Marta Chiesi |
Documents disponibles écrits par cet auteur



Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset / Marta Chiesi in Annals of Forest Science [en ligne], vol 73 n° 3 (September 2016)
![]()
[article]
Titre : Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset Type de document : Article/Communication Auteurs : Marta Chiesi, Auteur ; Gherardo Chirici, Auteur ; Marco Marchetti, Auteur Année de publication : 2016 Article en page(s) : pp 713 – 727 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biome
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] Fagus (genre)
[Termes descripteurs IGN] production primaire brute
[Termes descripteurs IGN] teneur en carbone
[Termes descripteurs IGN] teneur en eau liquide
[Termes descripteurs IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message : A daily 1-km Pan-European weather dataset can drive the BIOME-BGC model for the estimation of current and future beech gross primary production (GPP). Annual beech GPP is affected primarily by spring temperature and more irregularly by summer water stress.
Context : The spread of beech forests in Europe enhances the importance of modelling and monitoring their growth in view of ongoing climate changes.
Aims : The current paper assesses the capability of a biogeochemical model to simulate beech gross primary production (GPP) using a Pan-European 1-km weather dataset.
Methods : The model BIOME-BGC is applied in four European forest ecosystems having different climatic conditions where the eddy covariance technique is used to measure water and carbon fluxes. The experiment is in three main steps. First, the accuracy of BIOME-BGC GPP simulations is assessed through comparison with flux observations. Second, the influence of two major meteorological drivers (spring minimum temperature and growing season dryness) on observed and simulated inter-annual GPP variations is analysed. Lastly, the impacts of two climate change scenarios on beech GPP are evaluated through statistical analyses of the ground data and model simulations.
Results : The weather dataset can drive BIOME-BGC to simulate most of the beech GPP evolution in all four test areas. Both observed and simulated inter-annual GPP variations are mainly dependent on minimum temperature around the beginning of the growing season, while spring/summer dryness exerts a secondary role. BIOME-BGC can also reasonably predict the impacts of the examined climate change scenarios.
Conclusion : The proposed modelling approach is capable of approximately reproducing spatial and temporal beech GPP variations and impacts of expected climate changes in the examined European sites.Numéro de notice : A2016-713 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s13595-016-0560-7 date de publication en ligne : 07/06/2016 En ligne : https://doi.org/10.1007/s13595-016-0560-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82091
in Annals of Forest Science [en ligne] > vol 73 n° 3 (September 2016) . - pp 713 – 727[article]