Détail de l'auteur
Auteur Xiaohuan Xi |
Documents disponibles écrits par cet auteur



Forest above ground biomass inversion by fusing GLAS with optical remote sensing data / Xiaohuan Xi in ISPRS International journal of geo-information, vol 5 n° 4 (April 2016)
![]()
[article]
Titre : Forest above ground biomass inversion by fusing GLAS with optical remote sensing data Type de document : Article/Communication Auteurs : Xiaohuan Xi, Auteur ; Tingting Han, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes descripteurs IGN] données IceSat-Glas
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] hauteur de la végétation
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] MNS ASTER
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] Yunnan (Chine)Résumé : (auteur) Forest biomass is an important parameter for quantifying and understanding biological and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS) produced substantial scientific data for detecting the vegetation structure at the footprint level. This study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function) and ASTER GDEM data to estimate forest aboveground biomass (AGB) in Xishuangbanna, Yunnan Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet method. The ASTER DEM was used to compute the terrain index for reducing the topographic influence on the GLAS canopy height estimation. A neural network method was applied to assimilate the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest leaf area indices (LAIs) were derived from Landsat TM imagery. A series of biomass estimation models were developed and validated using regression analyses between field-estimated biomass, canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well with the field-estimated AGB (R2 = 0.61, RMSE = 52.79 Mg/ha). Combining the GLAS estimated canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 = 0.73, RMSE = 38.20 Mg/ha), which indicates that the accuracy of the estimated biomass in complex terrains can be improved significantly by integrating GLAS and optical remote sensing data. Numéro de notice : A2016-820 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.3390/ijgi5040045 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82625
in ISPRS International journal of geo-information > vol 5 n° 4 (April 2016)[article]