Détail de l'auteur
Auteur Christian Rogass |
Documents disponibles écrits par cet auteur (1)



Improving sensor fusion : a parametric method for the geometric coalignment of airborne hyperspectral and lidar data / Maximilian Brell in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
![]()
[article]
Titre : Improving sensor fusion : a parametric method for the geometric coalignment of airborne hyperspectral and lidar data Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Christian Rogass, Auteur ; Karl Segl, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 3460 - 3474 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] alignement semi-dirigé
[Termes IGN] appariement géométrique
[Termes IGN] données lidar
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image multicapteur
[Termes IGN] points homologues
[Termes IGN] superposition d'images
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Synergistic applications based on integrated hyperspectral and lidar data are receiving a growing interest from the remote-sensing community. A prerequisite for the optimum sensor fusion of hyperspectral and lidar data is an accurate geometric coalignment. The simple unadjusted integration of lidar elevation and hyperspectral reflectance causes a substantial loss of information and does not exploit the full potential of both sensors. This paper presents a novel approach for the geometric coalignment of hyperspectral and lidar airborne data, based on their respective adopted return intensity information. The complete approach incorporates ray tracing and subpixel procedures in order to overcome grid inherent discretization. It aims at the correction of extrinsic and intrinsic (camera resectioning) parameters of the hyperspectral sensor. In additional to a tie-point-based coregistration, we introduce a ray-tracing-based back projection of the lidar intensities for area-based cost aggregation. The approach consists of three processing steps. First is a coarse automatic tie-point-based boresight alignment. The second step coregisters the hyperspectral data to the lidar intensities. Third is a parametric coalignment refinement with an area-based cost aggregation. This hybrid approach of combining tie-point features and area-based cost aggregation methods for the parametric coregistration of hyperspectral intensity values to their corresponding lidar intensities results in a root-mean-square error of 1/3 pixel. It indicates that a highly integrated and stringent combination of different coalignment methods leads to an improvement of the multisensor coregistration. Numéro de notice : A2016-855 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2518930 En ligne : https://doi.org/10.1109/TGRS.2016.2518930 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82994
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 6 (June 2016) . - pp 3460 - 3474[article]