Détail de l'auteur
Auteur Laurent Longuevergne |
Documents disponibles écrits par cet auteur (4)



Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)
![]()
[article]
Titre : Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity Type de document : Article/Communication Auteurs : Marie Bouih , Auteur ; Isabelle Panet
, Auteur ; Dominique Remy, Auteur ; Laurent Longuevergne, Auteur ; Sylvain Bonvalot, Auteur
Année de publication : 2022 Projets : Université de Paris / Clerici, Christine Article en page(s) : n° 117465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] Chili
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] gradient de gravitation
[Termes IGN] jeu de données
[Termes IGN] levé gravimétrique
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] signal
[Termes IGN] subduction
[Termes IGN] tectonique des plaquesRésumé : (auteur) Subduction zones megathrust faults constitute a considerable hazard as they produce most of the world's largest earthquakes. However, the role in megathrust earthquake generation exerted by deeper subduction processes remains poorly understood. Here, we analyze the 2003 – 2014 space-time variations of the Earth's gravity gradients derived from three datasets of GRACE geoid models over a large region surrounding the rupture zone of the Mw 8.8 Maule earthquake. In all these datasets, our analysis reveals a large-amplitude gravity gradient signal, progressively increasing in the three months before the earthquake, North of the epicentral area. We show that such signals are equivalent to a water storage decrease over 2 months and cannot be explained by hydrological sources nor artefacts, but rather find origin from mass redistributions within the solid Earth on the continental side of the subduction zone. These gravity gradient variations could be explained by an extensional deformation of the slab around 150-km depth along the Nazca Plate subduction direction, associated with large-scale fluid release. Furthermore, the lateral migration of the gravity signal towards the surface from a low coupling segment around North to the high coupling one in the South suggests that the Mw 8.8 earthquake may have originated from the propagation up to the trench of this deeper slab deformation. Our results highlight the importance of observations of the Earth's time-varying gravity field from satellites in order to probe slow mass redistributions in-depth major plate boundaries and provide new information on dynamic processes in the subduction system, essential to better understand the seismic cycle as a whole. Numéro de notice : A2022-280 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2022.117465 En ligne : https://doi.org/10.1016/j.epsl.2022.117465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100288
in Earth and planetary science letters > vol 584 (15 April 2022) . - n° 117465[article]Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States / Stacy Larochelle (2021)
![]()
Titre : Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Adriano Gualandi, Auteur ; Laurent Longuevergne, Auteur ; Paul Rebischung
, Auteur ; Sophie Violette, Auteur ; Jean-Philippe Avouac, Auteur
Editeur : Washington DC [Etats-Unis] : Earth and Space Science Open Archive ESSOAr Année de publication : 2021 Projets : 1-Pas de projet / Clerici, Christine Importance : 29 p. Note générale : bibliographie
soumis au Journal of Geophysical Research - Solid EarthLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] aquifère
[Termes IGN] Arkansas (Etats-Unis)
[Termes IGN] déformation de la croute terrestre
[Termes IGN] élasticité
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] masse d'eau
[Termes IGN] Missouri (Etats-Unis)
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] série temporelle
[Termes IGN] surcharge hydrologiqueRésumé : (auteur) The continuous redistribution of water mass involved in the hydrologic cycle leads to deformation of the solid Earth. On a global scale, this deformation is well explained by redistribution in surface loading and can be quantified to first order with space-based gravimetric and geodetic measurements. At the regional scale, however, aquifer systems also undergo poroelastic deformation in response to groundwater fluctuations. Disentangling these related but distinct 3D deformation fields from geodetic time series is essential to accurately invert for changes in continental water mass, to understand the mechanical response of aquifers to internal pressure changes as well as to correct time series for these known effects. Here, we demonstrate a methodology to accomplish this task by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS) in central United States. We begin by characterizing the most important sources of signal in the spatially heterogeneous groundwater level dataset using an Independent Component Analysis. Then, to estimate the associated poroelastic displacements, we project geodetic time series corrected for surface loading effects onto orthogonalized versions of the groundwater temporal functions. We interpret the extracted displacements in light of analytical solutions and a 2D model relating groundwater level variations to surface displacements. In particular, the relatively low estimates of elastic moduli inferred from the poroelastic displacements and groundwater fluctuations may be indicative of surficial layers with a high fracture density. Our findings suggest that OPAS undergoes significant poroelastic deformation, including highly heterogeneous horizontal poroelastic displacements. Numéro de notice : P2021-006 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Preprint nature-HAL : Préprint DOI : 10.1002/essoar.10507870.1 Date de publication en ligne : 02/09/2021 En ligne : https://doi.org/10.1002/essoar.10507870.1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98994 Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
![]()
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur
Année de publication : 2019 Projets : 1-Pas de projet / Clerici, Christine Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]Science and user needs for observing global mass transport to understand global change and to benefit society / Roland Pail in Surveys in Geophysics, vol 36 n° 6 (November 2015)
![]()
[article]
Titre : Science and user needs for observing global mass transport to understand global change and to benefit society Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Henryk Dobslaw, Auteur ; Annette Eicker, Auteur ; Andreas Güntner, Auteur ; Martin Horwath, Auteur ; Eric Ivins, Auteur ; Laurent Longuevergne, Auteur ; Isabelle Panet , Auteur ; Bert Wouters, Auteur ; IUGG Expert Panel, Auteur
Année de publication : 2015 Article en page(s) : pp 743 - 772 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Atmosphère
[Termes IGN] changement climatique
[Termes IGN] gravimétrie spatialeRésumé : (auteur) Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth’s gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations. Numéro de notice : A2015--060 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10712-015-9348-9 Date de publication en ligne : 27/10/2015 En ligne : http://dx.doi.org/10.1007/s10712-015-9348-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83282
in Surveys in Geophysics > vol 36 n° 6 (November 2015) . - pp 743 - 772[article]