Détail de l'auteur
Auteur Qiang Chen |
Documents disponibles écrits par cet auteur (2)



Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January-1 2021)
![]()
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse multicritère
[Termes IGN] analyse spectrale
[Termes IGN] construction
[Termes IGN] déchet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gestion urbaine
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation hiérarchique
[Termes IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 158[article]
Titre : GPS time-variable seasonal signals modeling Type de document : Mémoire Auteurs : Qiang Chen, Auteur Editeur : Stuttgart : University of Stuttgart Année de publication : 2015 Importance : 65 p. Format : 21 x 30 cm Note générale : bibliographie
mémoire de master, Université de StuttgartLangues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] analyse de spectre singulier
[Termes IGN] compensation par moindres carrés
[Termes IGN] données GPS
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Kalman
[Termes IGN] oscillation
[Termes IGN] série temporelle
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Traitement de données GNSSIndex. décimale : MX Mémoires divers Résumé : (auteur) Seasonal signals (annual plus semi-annual) in GPS time series are of great importance for understanding the evolution of regional mass, i.e. ice and hydrology. Conventionally these signals (annual and semi-annual) are derived by least-squares fitting of harmonic terms with a constant amplitude and phase. In reality, however, such seasonal signals are modulated, i.e. they will have a time-variable amplitude and phase. Recently, Davis et al. (2012) proposed a Kalman filter based approach to capture the stochastic seasonal behavior of geodetic time series. In this study, a non-parametric approach, singular spectrum analysis (SSA) is introduced. It uses time domain data to extract information from short and noisy time series without prior knowledge of the dynamics affecting the time series. A prominent benefit is that obtained trends are not necessarily linear and extracted oscillations can be amplitude and phase modulated. In this work, the capability of SSA for analyzing time-variable seasonal signals from GPS time series is investigated. We also compare SSA-based results to two model-based results, i.e. least-squares analysis and Kalman filtering. Our results show that singular spectrum analysis could be a viable and complementary tool for exploring modulated oscillations from GPS time series. Based on the SSA-derived seasonal signals, we look into the effects of the input noise variances in the framework of Kalman filtering. Two Kalman filtering based approaches with different process noise models are compared over 79 GPS sites. We find that the basic Kalman filtering technique with the input noise model suggested by Davis et al. (2012) turns out to be optimal. Numéro de notice : 17348 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Mémoire masters divers En ligne : http://dx.doi.org/10.18419/opus-8824 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83707