Détail de l'auteur
Auteur Rongjun Qin |
Documents disponibles écrits par cet auteur (8)



Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms / Ningli Xu in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
![]()
[article]
Titre : Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms Type de document : Article/Communication Auteurs : Ningli Xu, Auteur ; Rongjun Qin, Auteur ; Shuang Song, Auteur Année de publication : 2023 Article en page(s) : n° 100032 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] chevauchement
[Termes IGN] données lidar
[Termes IGN] processus gaussien
[Termes IGN] recalage de données localisées
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Three-dimensional (3D) point cloud registration is a fundamental step for many 3D modeling and mapping applications. Existing approaches are highly disparate in the data source, scene complexity, and application, therefore the current practices in various point cloud registration tasks are still ad-hoc processes. Recent advances in computer vision and deep learning have shown promising performance in estimating rigid/similarity transformation between unregistered point clouds of complex objects and scenes. However, their performances are mostly evaluated using a limited number of datasets from a single sensor (e.g. Kinect or RealSense cameras), lacking a comprehensive overview of their applicability in photogrammetric 3D mapping scenarios. In this work, we provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods, where we analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources. The quantitative analysis allows for exploring the strengths, applicability, challenges, and future trends of these methods. In contrast to existing analysis works that introduce point cloud registration as a holistic process, our experimental analysis is based on its inherent two-step process to better comprehend these approaches including feature/keypoint-based initial coarse registration and dense fine registration through cloud-to-cloud (C2C) optimization. More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested. We observed that the success rate of most of the algorithms are fewer than 40% over the datasets we tested and there are still are large margin of improvement upon existing algorithms concerning 3D sparse corresopondence search, and the ability to register point clouds with complex geometry and occlusions. With the evaluated statistics on three datasets, we conclude the best-performing methods for each step and provide our recommendations, and outlook future efforts. Numéro de notice : A2023-149 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100032 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102808
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100032[article]A comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images / Hessah Albanwan in Photogrammetric record, vol 37 n° 180 (December 2022)
![]()
[article]
Titre : A comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images Type de document : Article/Communication Auteurs : Hessah Albanwan, Auteur ; Rongjun Qin, Auteur Année de publication : 2022 Article en page(s) : pp 385 - 409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couple stéréoscopique
[Termes IGN] modèle stéréoscopique
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) Deep-learning (DL) stereomatching methods gained great attention in remote sensing satellite datasets. However, most of these existing studies conclude assessments based only on a few/single stereo-images lacking a systematic evaluation on how robust DL methods are on satellite stereo-images with varying radiometric and geometric configurations. This paper provides an evaluation of four DL stereomatching methods through hundreds of multi-date multi-site satellite stereopairs with varying geometric configurations, against the traditional well-practiced Census-semi-global matching (SGM), to comprehensively understand their accuracy, robustness, generalisation capabilities, and their practical potential. The DL methods include a learning-based cost metric through convolutional neural networks (MC-CNN) followed by SGM, and three end-to-end (E2E) learning models using Geometry and Context Network (GCNet), Pyramid Stereo Matching Network (PSMNet), and LEAStereo. Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalise well for unseen data. The learning-based cost metric and Census-SGM are rather robust and can consistently achieve acceptable results. All DL algorithms are robust to geometric configurations of stereopairs and are less sensitive in comparison to the Census-SGM, while learning-based cost metrics can generalise on satellite images when trained on different datasets (airborne or ground-view). Numéro de notice : A2022-938 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12430 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1111/phor.12430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102684
in Photogrammetric record > vol 37 n° 180 (December 2022) . - pp 385 - 409[article]A unified framework of bundle adjustment and feature matching for high-resolution satellite images / Xiao Ling in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)
![]()
[article]
Titre : A unified framework of bundle adjustment and feature matching for high-resolution satellite images Type de document : Article/Communication Auteurs : Xiao Ling, Auteur ; Xu Huang, Auteur ; Rongjun Qin, Auteur Année de publication : 2021 Article en page(s) : pp 485 - 490 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] compensation par faisceaux
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] orientation du capteur
[Termes IGN] précision radiométriqueRésumé : (Auteur) Bundle adjustment (BA) is a technique for refining sensor orientations of satellite images, while adjustment accuracy is correlated with feature matching results. Feature matching often contains high uncertainties in weak/repeat textures, while BA results are helpful in reducing these uncertainties. To compute more accurate orientations, this article incorporates BA and feature matching in a unified framework and formulates the union as the optimization of a global energy function so that the solutions of the BA and feature matching are constrained with each other. To avoid a degeneracy in the optimization, we propose a comprised solution by breaking the optimization of the global energy function into two-step suboptimizations and compute the local minimums of each suboptimization in an incremental manner. Experiments on multi-view high-resolution satellite images show that our proposed method outperforms state-of-the-art orientation techniques with or without accurate least-squares matching. Numéro de notice : A2021-571 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.7.485 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.14358/PERS.87.7.485 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98163
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 7 (July 2021) . - pp 485 - 490[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021071 SL Revue Centre de documentation Revues en salle Disponible Post‐filtering with surface orientation constraints for stereo dense image matching / Xu Huang in Photogrammetric record, vol 35 n° 171 (September 2020)
![]()
[article]
Titre : Post‐filtering with surface orientation constraints for stereo dense image matching Type de document : Article/Communication Auteurs : Xu Huang, Auteur ; Rongjun Qin, Auteur Année de publication : 2020 Article en page(s) : pp 375-401 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] filtrage numérique d'image
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] orientation d'imageRésumé : (Auteur) Dense image matching (DIM) is a critical technique when computing accurate 3D geometric information for many photogrammetric applications. Most DIM methods adopt first‐order regularisation priors for efficient matching, which often introduce stepped biases (also called fronto‐parallel biases) into the matching results. To remove these biases and compute more accurate matching results, this paper proposes a novel post‐filtering method by adjusting the surface orientation of each pixel in the matching process. The core algorithm formulates the post‐filtering as the optimisation of a global energy function with second‐order regularisation priors. A compromise solution of the energy function is computed by breaking the optimisation into a collection of sub‐optimisations of each pixel in a local adaptive window. The proposed method was compared with several state‐of‐the‐art post‐filtering methods on indoor, aerial and satellite datasets. The comparisons demonstrate that the proposed method obtains the highest post‐filtering accuracies on all datasets. Numéro de notice : A2020-437 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12333 Date de publication en ligne : 20/09/2020 En ligne : https://doi.org/10.1111/phor.12333 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95843
in Photogrammetric record > vol 35 n° 171 (September 2020) . - pp 375-401[article]Assessment of dense image matchers for digital surface model generation using airborne and spaceborne images – an update / Yilong Han in Photogrammetric record, vol 35 n° 169 (March 2020)
![]()
[article]
Titre : Assessment of dense image matchers for digital surface model generation using airborne and spaceborne images – an update Type de document : Article/Communication Auteurs : Yilong Han, Auteur ; Rongjun Qin, Auteur ; Xu Huang, Auteur Année de publication : 2020 Article en page(s) : pp 58 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement d'images
[Termes IGN] estimation de précision
[Termes IGN] image captée par drone
[Termes IGN] image satellite
[Termes IGN] modèle numérique de surfaceRésumé : (Auteur) Digital surface model (DSM) generation is one of the fundamental issues in photogrammetry and the mapping industry. This paper provides a comprehensive assessment of state‐of‐the‐art image matchers using nine open‐source and commercial software packages on aerial and unmanned aerial vehicle (UAV) images and five software packages on spaceborne images. Two datasets provide an update on DSM generation software for both airborne and spaceborne data: a 5 × 5 UAV image block with high‐precision models; and a WorldView‐1 stereopair with lidar reference data. To understand the performance of the image matchers, accuracy analysis is additionally performed on five selected ground objects. The tested image matchers adopting hierarchical semi‐global matching fitted the reference DSM better, thus yielding better accuracy. Numéro de notice : A2020-132 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12310 Date de publication en ligne : 29/03/2020 En ligne : https://doi.org/10.1111/phor.12310 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94816
in Photogrammetric record > vol 35 n° 169 (March 2020) . - pp 58 - 80[article]3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets / Hessah Albanwan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)
PermalinkIndividual tree detection and crown delineation with 3D information from multi-view satellite Images / Changlin Xiao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
Permalink3D change detection – Approaches and applications / Rongjun Qin in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)
Permalink