Détail de l'auteur
Auteur David Kelbe |
Documents disponibles écrits par cet auteur



A novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
![]()
[article]
Titre : A novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure Type de document : Article/Communication Auteurs : Claudia Paris, Auteur ; David Kelbe, Auteur ; Jan Van Aardt, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2017 Article en page(s) : pp 3679 - 3693 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] corrélation croisée normalisée
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] télémétrie laser sur satelliteRésumé : (Auteur) Tree crown structural parameters are key inputs to studies spanning forest fire propagation, invasive species dynamics, avian habitat provision, and so on, but these parameters consistently are difficult to measure. While airborne laser scanning (ALS) provides uniform data and a consistent nadir perspective necessary for crown segmentation, the data characteristics of terrestrial laser scanning (TLS) make such crown segmentation efforts much more challenging. We present a data fusion approach to extract crown structure from TLS, by exploiting the complementary perspective of ALS. Multiple TLS point clouds are automatically registered to a single ALS point cloud by maximizing the normalized cross correlation between the global ALS canopy height model (CHM) and each of the local TLS CHMs through parameter optimization of a planar Euclidean transform. Per-tree canopy segmentation boundaries, which are reliably obtained from ALS, can then be adapted onto the more irregular TLS data. This is repeated for each TLS scan; the combined segmentation results from each registered TLS scan and the ALS data are fused into a single per-tree point cloud, from which canopy-level structural parameters readily can be extracted. Numéro de notice : A2017-485 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2675963 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2675963 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86407
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 7 (July 2017) . - pp 3679 - 3693[article]Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics / David Kelbe in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
![]()
[article]
Titre : Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics Type de document : Article/Communication Auteurs : David Kelbe, Auteur ; Jan Van Aardt, Auteur ; Paul Romanczyk, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 729 - 741 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] acquisition de données
[Termes descripteurs IGN] carte de confiance
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] mesure géométrique
[Termes descripteurs IGN] New York (Etats-Unis ; état)
[Termes descripteurs IGN] numérisation
[Termes descripteurs IGN] structure d'un peuplement forestier
[Termes descripteurs IGN] superpositionRésumé : (Auteur) Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in order to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. This paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm. Numéro de notice : A2017-142 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2016.2614251 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84630
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 2 (February 2017) . - pp 729 - 741[article]