Détail de l'auteur
Auteur Nirav N. Patel |
Documents disponibles écrits par cet auteur



Improving large area population mapping using geotweet densities / Nirav N. Patel in Transactions in GIS, vol 21 n° 2 (April 2017)
![]()
[article]
Titre : Improving large area population mapping using geotweet densities Type de document : Article/Communication Auteurs : Nirav N. Patel, Auteur ; Forrest R. Stevens, Auteur ; Zhuojie Huang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 317 – 331 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] cartographie dynamique
[Termes descripteurs IGN] cartographie statistique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] Indonésie
[Termes descripteurs IGN] recensement
[Termes descripteurs IGN] répartition géographique
[Termes descripteurs IGN] Twitter
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Many different methods are used to disaggregate census data and predict population densities to construct finer scale, gridded population data sets. These methods often involve a range of high resolution geospatial covariate datasets on aspects such as urban areas, infrastructure, land cover and topography; such covariates, however, are not directly indicative of the presence of people. Here we tested the potential of geo-located tweets from the social media application, Twitter, as a covariate in the production of population maps. The density of geo-located tweets in 1x1 km grid cells over a 2-month period across Indonesia, a country with one of the highest Twitter usage rates in the world, was input as a covariate into a previously published random forests-based census disaggregation method. Comparison of internal measures of accuracy and external assessments between models built with and without the geotweets showed that increases in population mapping accuracy could be obtained using the geotweet densities as a covariate layer. The work highlights the potential for such social media-derived data in improving our understanding of population distributions and offers promise for more dynamic mapping with such data being continually produced and freely available. Numéro de notice : A2017-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1111/tgis.12214 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84700
in Transactions in GIS > vol 21 n° 2 (April 2017) . - pp 317 – 331[article]