Détail de l'auteur
Auteur Ibrahim Fayad |
Documents disponibles écrits par cet auteur (3)



A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms / Ibrahim Fayad in Remote sensing of environment, vol 265 (November 2021)
![]()
[article]
Titre : A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms Type de document : Article/Communication Auteurs : Ibrahim Fayad, Auteur ; Dino Lenco, Auteur ; Nicolas Baghdadi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112652 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Brésil
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Eucalyptus (genre)
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] random-motion-over-ground model
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Full waveform (FW) LiDAR systems have proven their effectiveness to map forest biophysical variables in the last two decades, owing to their ability of measuring, with high accuracy, forest vertical structures. The Global Ecosystem Dynamics Investigation (GEDI) system on board the International Space Station (ISS) is the latest FW spaceborne LiDAR instrument for the continuous observation of Earth's forests. FW systems rely on very sophisticated pre-processing steps to generate a priori metrics in order to leverage their capabilities for the accurate estimation of the aforementioned forest characteristics. The ever-expanding volume of acquired GEDI data, which to date comprises more than 25 billion acquired unfiltered shots, and along with the pre-processed data, amounting to more than 90 TB of data, raises new challenges in terms of adapted preprocessing methods for the suitable exploitation of such a huge and complex amount of LiDAR data. To overcome the issues related to the generation of relevant metrics from GEDI data, we propose a new metric-free approach to estimate canopy dominant heights (Hdom) and wood volume (V) of Eucalyptus plantations over five different regions in Brazil. To avoid metric computation, we leverage deep learning techniques and, more in detail, convolutional neural networks with the aim to analyze the GEDI Level 1B geolocated waveforms. Performance comparisons were conducted between four convolutional neural network (CNN) variants using GEDI waveform data (either untouched, or subsetted) and a metric based Random Forest regressor (RF). Additionally, we tested if our framework can improve the generalization of the models to different distant regions. First, the models were trained using data from all the study regions. Cross validated results showed that the CNN based models compared well against their RF counterpart for both Hdom and V. The RMSE on the estimation of Hdom from the CNN based models varied between 1.54 and 1.94 m with a coefficient of determination (R2) between 0.86 and 0.91, while the RF model produced an accuracy on Hdom estimates of 1.45 m (R2 = 0.92). For V, CNN based estimations ranged from 27.76 to 33.33 m3.ha−1 (R2 between 0.82 and 0.88), while for RF, the RMSE was 27.61 m3.ha−1 (R2 = 0.88). Next, model generalization was assessed by means of a spatial transfer experiment. For Hdom, both the CNN and RF approaches showed similar performances to a global model, however, the CNN based approach showed higher variability on the estimation accuracy, and the variability was related to the forest structure between the trained and tested data (similar tree heights yield better accuracies). For the estimation of V, considering both approaches, the accuracy was dependent on the allometric relationship between Hdom and V in the training and testing regions while lower accuracies on V were obtained when the testing and training regions exhibited a different allometric relationship. Numéro de notice : A2021-869 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112652 Date de publication en ligne : 31/08/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112652 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99118
in Remote sensing of environment > vol 265 (November 2021) . - n° 112652[article]Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data / Ibrahim Fayad in International journal of applied Earth observation and geoinformation, vol 52 (October 2016)
![]()
[article]
Titre : Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data Type de document : Article/Communication Auteurs : Ibrahim Fayad, Auteur ; Nicolas Baghdadi, Auteur ; Stéphane Guitet , Auteur ; Jean-Stéphane Bailly, Auteur ; Bruno Hérault, Auteur ; Valéry Gond, Auteur ; Mahmoud El-Hajj, Auteur ; Ho Tong Minh Dinh, Auteur
Année de publication : 2016 Article en page(s) : pp 502 - 514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] données environnementales
[Termes IGN] données ICEsat
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] régressionRésumé : (auteur) Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values. Numéro de notice : A2016--202 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2016.07.015 Date de publication en ligne : 01/08/2016 En ligne : https://doi.org/10.1016/j.jag.2016.07.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96037
in International journal of applied Earth observation and geoinformation > vol 52 (October 2016) . - pp 502 - 514[article]Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne Lidar data: application on French Guiana / Ibrahim Fayad in Remote sensing, vol 8 n° 3 (March 2016)
![]()
[article]
Titre : Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne Lidar data: application on French Guiana Type de document : Article/Communication Auteurs : Ibrahim Fayad, Auteur ; Nicolas Baghdadi, Auteur ; Jean-Stéphane Bailly, Auteur ; Nicolas Barbier, Auteur ; Valéry Gond, Auteur ; Bruno Hérault, Auteur ; Mahmoud El-Hajj, Auteur ; Frédéric Fabre, Auteur ; José Perrin, Auteur Année de publication : 2016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] hauteur des arbres
[Termes IGN] krigeage
[Termes IGN] régressionRésumé : (auteur) LiDAR data has been successfully used to estimate forest parameters such as canopy heights and biomass. Major limitation of LiDAR systems (airborne and spaceborne) arises from their limited spatial coverage. In this study, we present a technique for canopy height mapping using airborne and spaceborne LiDAR data (from the Geoscience Laser Altimeter System (GLAS)). First, canopy heights extracted from both airborne and spaceborne LiDAR were extrapolated from available environmental data. The estimated canopy height maps using Random Forest (RF) regression from airborne or GLAS calibration datasets showed similar precisions (~6 m). To improve the precision of canopy height estimates, regression-kriging was used. Results indicated an improvement in terms of root mean square error (RMSE, from 6.5 to 4.2 m) using the GLAS dataset, and from 5.8 to 1.8 m using the airborne LiDAR dataset. Finally, in order to investigate the impact of the spatial sampling of future LiDAR missions on canopy height estimates precision, six subsets were derived from the initial airborne LiDAR dataset. Results indicated that using the regression-kriging approach a precision of 1.8 m on the canopy height map was achievable with a flight line spacing of 5 km. This precision decreased to 4.8 m for flight line spacing of 50 km. Numéro de notice : A2016--121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article En ligne : http://doi.org/10.3390/rs8030240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84818
in Remote sensing > vol 8 n° 3 (March 2016)[article]