Détail de l'auteur
Auteur José Perrin |
Documents disponibles écrits par cet auteur (1)



Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne Lidar data: application on French Guiana / Ibrahim Fayad in Remote sensing, vol 8 n° 3 (March 2016)
![]()
[article]
Titre : Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne Lidar data: application on French Guiana Type de document : Article/Communication Auteurs : Ibrahim Fayad, Auteur ; Nicolas Baghdadi, Auteur ; Jean-Stéphane Bailly, Auteur ; Nicolas Barbier, Auteur ; Valéry Gond, Auteur ; Bruno Hérault, Auteur ; Mahmoud El-Hajj, Auteur ; Frédéric Fabre, Auteur ; José Perrin, Auteur Année de publication : 2016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] hauteur des arbres
[Termes IGN] krigeage
[Termes IGN] régressionRésumé : (auteur) LiDAR data has been successfully used to estimate forest parameters such as canopy heights and biomass. Major limitation of LiDAR systems (airborne and spaceborne) arises from their limited spatial coverage. In this study, we present a technique for canopy height mapping using airborne and spaceborne LiDAR data (from the Geoscience Laser Altimeter System (GLAS)). First, canopy heights extracted from both airborne and spaceborne LiDAR were extrapolated from available environmental data. The estimated canopy height maps using Random Forest (RF) regression from airborne or GLAS calibration datasets showed similar precisions (~6 m). To improve the precision of canopy height estimates, regression-kriging was used. Results indicated an improvement in terms of root mean square error (RMSE, from 6.5 to 4.2 m) using the GLAS dataset, and from 5.8 to 1.8 m using the airborne LiDAR dataset. Finally, in order to investigate the impact of the spatial sampling of future LiDAR missions on canopy height estimates precision, six subsets were derived from the initial airborne LiDAR dataset. Results indicated that using the regression-kriging approach a precision of 1.8 m on the canopy height map was achievable with a flight line spacing of 5 km. This precision decreased to 4.8 m for flight line spacing of 50 km. Numéro de notice : A2016--121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs8030240 En ligne : http://doi.org/10.3390/rs8030240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84818
in Remote sensing > vol 8 n° 3 (March 2016)[article]