Détail de l'auteur
Auteur Xinyi Liu |
Documents disponibles écrits par cet auteur (3)



Generation of concise 3D building model from dense meshes by extracting and completing planar primitives / Xinyi Liu in Photogrammetric record, vol 38 n° 181 (March 2023)
![]()
[article]
Titre : Generation of concise 3D building model from dense meshes by extracting and completing planar primitives Type de document : Article/Communication Auteurs : Xinyi Liu, Auteur ; Xianzhang Zhu, Auteur ; Yongjun Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 22 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] adjacence
[Termes IGN] bati
[Termes IGN] maillage
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] modélisation du bâti
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D
[Termes IGN] segmentation en plan
[Termes IGN] semis de pointsRésumé : (auteur) The generation of a concise building model has been and continues to be a challenge in photogrammetry and computer graphics. The current methods typically focus on the simplicity and fidelity of the model, but those methods either fail to preserve the structural information or suffer from low computational efficiency. In this paper, we propose a novel method to generate concise building models from dense meshes by extracting and completing the planar primitives of the building. From the perspective of probability, we first extract planar primitives from the input mesh and obtain the adjacency relationships between the primitives. Since primitive loss and structural defects are inevitable in practice, we employ a novel structural completion approach to eliminate linkage errors. Finally, the concise polygonal mesh is reconstructed by connectivity-based primitive assembling. Our method is efficient and robust to various challenging data. Experiments on various building models revealed the efficacy and applicability of our method. Numéro de notice : A2023-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12438 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1111/phor.12438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102865
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 22 - 46[article]Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN / Xinyi Liu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
![]()
[article]
Titre : Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN Type de document : Article/Communication Auteurs : Xinyi Liu, Auteur ; Qunying Huang, Auteur ; Song Gao, Auteur Année de publication : 2019 Article en page(s) : pp 1196 - 1223 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] mobilité urbaine
[Termes IGN] réseau social
[Termes IGN] TwitterMots-clés libres : density-based spatial clustering of applications with noise (DBSCAN) Résumé : (Auteur) The density-based spatial clustering of applications with noise (DBSCAN) method is often used to identify individual activity clusters (i.e., zones) using digital footprints captured from social networks. However, DBSCAN is sensitive to the two parameters, eps and minpts. This paper introduces an improved density-based clustering algorithm, Multi-Scaled DBSCAN (M-DBSCAN), to mitigate the detection uncertainty of clusters produced by DBSCAN at different scales of density and cluster size. M-DBSCAN iteratively calibrates suitable local eps and minpts values instead of using one global parameter setting as DBSCAN for detecting clusters of varying densities, and proves to be effective for detecting potential activity zones. Besides, M-DBSCAN can significantly reduce the noise ratio by identifying all points capturing the activities performed in each zone. Using the historic geo-tagged tweets of users in Washington, D.C. and in Madison, Wisconsin, the results reveal that: 1) M-DBSCAN can capture dispersed clusters with low density of points, and therefore detecting more activity zones for each user; 2) A value of 40 m or higher should be used for eps to reduce the possibility of collapsing distinctive activity zones; and 3) A value between 200 and 300 m is recommended for eps while using DBSCAN for detecting activity zones. Numéro de notice : A2019-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1563301 Date de publication en ligne : 09/01/2019 En ligne : https://doi.org/10.1080/13658816.2018.1563301 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92781
in International journal of geographical information science IJGIS > Vol 33 n° 5-6 (May - June 2019) . - pp 1196 - 1223[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019051 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019052 RAB Revue Centre de documentation En réserve 3L Disponible 3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database / Rujun Cao in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
![]()
[article]
Titre : 3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database Type de document : Article/Communication Auteurs : Rujun Cao, Auteur ; Yongjun Zhang, Auteur ; Xinyi Liu, Auteur ; Zongze Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 1359 - 1380 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] base de données localisées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] niveau de détail
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] regroupement de données
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (Auteur) Three-dimensional (3D) building models are essential for 3D Geographic Information Systems and play an important role in various urban management applications. Although several light detection and ranging (LiDAR) data-based reconstruction approaches have made significant advances toward the fully automatic generation of 3D building models, the process is still tedious and time-consuming, especially for massive point clouds. This paper introduces a new framework that utilizes a spatial database to achieve high performance via parallel computation for fully automatic 3D building roof reconstruction from airborne LiDAR data. The framework integrates data-driven and model-driven methods to produce building roof models of the primary structure with detailed features. The framework is composed of five major components: (1) a density-based clustering algorithm to segment individual buildings, (2) an improved boundary-tracing algorithm, (3) a hybrid method for segmenting planar patches that selects seed points in parameter space and grows the regions in spatial space, (4) a boundary regularization approach that considers outliers and (5) a method for reconstructing the topological and geometrical information of building roofs using the intersections of planar patches. The entire process is based on a spatial database, which has the following advantages: (a) managing and querying data efficiently, especially for millions of LiDAR points, (b) utilizing the spatial analysis functions provided by the system, reducing tedious and time-consuming computation, and (c) using parallel computing while reconstructing 3D building roof models, improving performance. Numéro de notice : A2017-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1301456 En ligne : http://dx.doi.org/10.1080/13658816.2017.1301456 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85352
in International journal of geographical information science IJGIS > vol 31 n° 7-8 (July - August 2017) . - pp 1359 - 1380[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2017041 RAB Revue Centre de documentation En réserve 3L Disponible 079-2017042 RAB Revue Centre de documentation Revues en salle Disponible