Détail de l'auteur
Auteur Xinyi Liu |
Documents disponibles écrits par cet auteur



Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN / Xinyi Liu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
![]()
[article]
Titre : Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN Type de document : Article/Communication Auteurs : Xinyi Liu, Auteur ; Qunying Huang, Auteur ; Song Gao, Auteur Année de publication : 2019 Article en page(s) : pp 1196 - 1223 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] mobilité urbaine
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] TwitterMots-clés libres : density-based spatial clustering of applications with noise (DBSCAN) Résumé : (Auteur) The density-based spatial clustering of applications with noise (DBSCAN) method is often used to identify individual activity clusters (i.e., zones) using digital footprints captured from social networks. However, DBSCAN is sensitive to the two parameters, eps and minpts. This paper introduces an improved density-based clustering algorithm, Multi-Scaled DBSCAN (M-DBSCAN), to mitigate the detection uncertainty of clusters produced by DBSCAN at different scales of density and cluster size. M-DBSCAN iteratively calibrates suitable local eps and minpts values instead of using one global parameter setting as DBSCAN for detecting clusters of varying densities, and proves to be effective for detecting potential activity zones. Besides, M-DBSCAN can significantly reduce the noise ratio by identifying all points capturing the activities performed in each zone. Using the historic geo-tagged tweets of users in Washington, D.C. and in Madison, Wisconsin, the results reveal that: 1) M-DBSCAN can capture dispersed clusters with low density of points, and therefore detecting more activity zones for each user; 2) A value of 40 m or higher should be used for eps to reduce the possibility of collapsing distinctive activity zones; and 3) A value between 200 and 300 m is recommended for eps while using DBSCAN for detecting activity zones. Numéro de notice : A2019-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1563301 date de publication en ligne : 09/01/2019 En ligne : https://doi.org/10.1080/13658816.2018.1563301 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92781
in International journal of geographical information science IJGIS > Vol 33 n° 5-6 (May - June 2019) . - pp 1196 - 1223[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019052 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019051 SL Revue Centre de documentation Revues en salle Disponible 3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database / Rujun Cao in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
![]()
[article]
Titre : 3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database Type de document : Article/Communication Auteurs : Rujun Cao, Auteur ; Yongjun Zhang, Auteur ; Xinyi Liu, Auteur ; Zongze Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 1359 - 1380 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] niveau de détail
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] toitRésumé : (Auteur) Three-dimensional (3D) building models are essential for 3D Geographic Information Systems and play an important role in various urban management applications. Although several light detection and ranging (LiDAR) data-based reconstruction approaches have made significant advances toward the fully automatic generation of 3D building models, the process is still tedious and time-consuming, especially for massive point clouds. This paper introduces a new framework that utilizes a spatial database to achieve high performance via parallel computation for fully automatic 3D building roof reconstruction from airborne LiDAR data. The framework integrates data-driven and model-driven methods to produce building roof models of the primary structure with detailed features. The framework is composed of five major components: (1) a density-based clustering algorithm to segment individual buildings, (2) an improved boundary-tracing algorithm, (3) a hybrid method for segmenting planar patches that selects seed points in parameter space and grows the regions in spatial space, (4) a boundary regularization approach that considers outliers and (5) a method for reconstructing the topological and geometrical information of building roofs using the intersections of planar patches. The entire process is based on a spatial database, which has the following advantages: (a) managing and querying data efficiently, especially for millions of LiDAR points, (b) utilizing the spatial analysis functions provided by the system, reducing tedious and time-consuming computation, and (c) using parallel computing while reconstructing 3D building roof models, improving performance. Numéro de notice : A2017-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1301456 En ligne : http://dx.doi.org/10.1080/13658816.2017.1301456 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85352
in International journal of geographical information science IJGIS > vol 31 n° 7-8 (July - August 2017) . - pp 1359 - 1380[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2017041 RAB Revue Centre de documentation En réserve 3L Disponible 079-2017042 RAB Revue Centre de documentation Revues en salle Disponible