Détail de l'auteur
Auteur Lien T.H. Pham |
Documents disponibles écrits par cet auteur



Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms / Lien T.H. Pham in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
![]()
[article]
Titre : Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms Type de document : Article/Communication Auteurs : Lien T.H. Pham, Auteur Année de publication : 2017 Article en page(s) : pp 86 - 97 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] biomasse forestière
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image SPOT 4
[Termes descripteurs IGN] image SPOT 5
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] teneur en carbone
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] Viet NamRésumé : (Auteur) Mangrove forests are well-known for their provision of ecosystem services and capacity to reduce carbon dioxide concentrations in the atmosphere. Mapping and quantifying mangrove biomass is useful for the effective management of these forests and maximizing their ecosystem service performance. The objectives of this research were to model, map, and analyse the biomass change between 2000 and 2011 of mangrove forests in the Cangio region in Vietnam. SPOT 4 and 5 images were used in conjunction with object-based image analysis and machine learning algorithms. The study area included natural and planted mangroves of diverse species. After image preparation, three different mangrove associations were identified using two levels of image segmentation followed by a Support Vector Machine classifier and a range of spectral, texture and GIS information for classification. The overall classification accuracy for the 2000 and 2011 images were 77.1% and 82.9%, respectively. Random Forest regression algorithms were then used for modelling and mapping biomass. The model that integrated spectral, vegetation association type, texture, and vegetation indices obtained the highest accuracy (R2adj = 0.73). Among the different variables, vegetation association type was the most important variable identified by the Random Forest model. Based on the biomass maps generated from the Random Forest, total biomass in the Cangio mangrove forest increased by 820,136 tons over this period, although this change varied between the three different mangrove associations. Numéro de notice : A2017-332 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.03.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.03.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85485
in ISPRS Journal of photogrammetry and remote sensing > vol 128 (June 2017) . - pp 86 - 97[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017063 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017062 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt