Détail de l'auteur
Auteur Yuan Li |
Documents disponibles écrits par cet auteur



Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Wu Bo, Auteur Année de publication : 2021 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] CityGML
[Termes descripteurs IGN] contrainte géométrique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] ville intelligenteRésumé : (auteur) The complexity and variety of buildings and the defects of point cloud data are the main challenges faced by 3D urban reconstruction from point clouds, especially in metropolitan areas. In this paper, we developed a method that embeds multiple relations into a procedural modelling process for the automatic 3D reconstruction of buildings from photogrammetric point clouds. First, a hybrid tree of constructive solid geometry and boundary representation (CSG-BRep) was built to decompose the building bounding space into multiple polyhedral cells based on geometric-relation constraints. The cells that approximate the shapes of buildings were then selected based on topological-relation constraints and geometric building models were generated using a reconstructing CSG-BRep tree. Finally, different parts of buildings were retrieved from the CSG-BRep trees, and specific surface types were recognized to convert the building models into the City Geography Markup Language (CityGML) format. The point clouds of 105 buildings in a metropolitan area in Hong Kong were used to evaluate the performance of the proposed method. Compared with two existing methods, the proposed method performed the best in terms of robustness, regularity, and topological correctness. The CityGML building models enriched with semantic information were also compared with the manually digitized ground truth, and the high level of consistency between the results suggested that the produced models will be useful in smart city applications. Numéro de notice : A2021-078 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010129 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.3390/rs13010129 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96820
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 13[article]Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
![]()
[article]
Titre : Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Bo Wu, Auteur ; Xuming Ge, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] classification basée sur les régions
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation en régions
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Objects are formed by various structures and such structural information is essential for the identification of objects, especially for street facilities presented by mobile laser scanning (MLS) data with abundant details. However, due to the large volume of data, large variations in point density, noise and complexity of scanned scenes, the achievement of effective decomposition of objects into physical meaningful structures remains a challenge issue. And structural information has been rarely considered to improve the accuracy of distinguishing between objects with global or local similarity, such as traffic signs and traffic lights. Therefore, we propose a structural segmentation and classification method for MLS point clouds that is efficient and robust to variations in point density and complex urban scenes. During the segmentation stage, a novel region growing approach and a multi-size supervoxel segmentation algorithm robust to noise and varying density are combined to extract effective local shape descriptors. Structural components with physically meaningful labels are generated via structural labelling and clustering. During the classification stage, we consider the structural information at various scales and locations and encode it into a conditional random-field model for unary and pairwise inferences. High-order potentials are also introduced into the conditional random field to eliminate regional label noise. These high-order potentials are defined upon regions independent of connection relationships and can therefore take effect on isolated nodes. Experiments with two MLS datasets of typical urban scenes in Paris and Hong Kong were used to evaluate the performance of the proposed method. Nine and eleven different object classes were recognized from these two datasets with overall accuracies of 97.13% and 95.79%, respectively, indicating the effectiveness of the proposed method of interpreting complex urban scenes from point clouds with large variations in point density. Compared with previous studies on the Paris dataset, our method was able to recognize more classes and obtained a mean F1-score of 72.70% of seven common classes, being higher than the best of previous results. Numéro de notice : A2019-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.007 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93075
in ISPRS Journal of photogrammetry and remote sensing > vol 153 (July 2019) . - pp 151 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Robust point cloud classification based on multi-level semantic relationships for urban scenes / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)
![]()
[article]
Titre : Robust point cloud classification based on multi-level semantic relationships for urban scenes Type de document : Article/Communication Auteurs : Qing Zhu, Auteur ; Yuan Li, Auteur ; Han Hu, Auteur ; Bo Wu, Auteur Année de publication : 2017 Article en page(s) : pp 86 - 102 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] description multiniveau
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] relation sémantique
[Termes descripteurs IGN] voxel
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) The semantic classification of point clouds is a fundamental part of three-dimensional urban reconstruction. For datasets with high spatial resolution but significantly more noises, a general trend is to exploit more contexture information to surmount the decrease of discrimination of features for classification. However, previous works on adoption of contexture information are either too restrictive or only in a small region and in this paper, we propose a point cloud classification method based on multi-level semantic relationships, including point–homogeneity, supervoxel–adjacency and class–knowledge constraints, which is more versatile and incrementally propagate the classification cues from individual points to the object level and formulate them as a graphical model. The point–homogeneity constraint clusters points with similar geometric and radiometric properties into regular-shaped supervoxels that correspond to the vertices in the graphical model. The supervoxel–adjacency constraint contributes to the pairwise interactions by providing explicit adjacent relationships between supervoxels. The class–knowledge constraint operates at the object level based on semantic rules, guaranteeing the classification correctness of supervoxel clusters at that level. International Society of Photogrammetry and Remote Sensing (ISPRS) benchmark tests have shown that the proposed method achieves state-of-the-art performance with an average per-area completeness and correctness of 93.88% and 95.78%, respectively. The evaluation of classification of photogrammetric point clouds and DSM generated from aerial imagery confirms the method’s reliability in several challenging urban scenes. Numéro de notice : A2017-347 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.022 En ligne : https://dx.doi.org/10.1016/j.isprsjprs.2017.04.022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85611
in ISPRS Journal of photogrammetry and remote sensing > vol 129 (July 2017) . - pp 86 - 102[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017073 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt