Détail de l'auteur
Auteur Kai Zhou |
Documents disponibles écrits par cet auteur (3)



An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
![]()
[article]
Titre : An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Lin Cao, Auteur ; Shiyun Yin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande spectrale
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] feuille (végétation)
[Termes IGN] Ginkgo biloba
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] Kiangsou (Chine)
[Termes IGN] réflectance végétaleRésumé : (auteur) As a key phenolic pigment concentrated in the surface tissues of leaves, flavonoids (Flav) are the major bioactive ingredients in Ginkgo leaf extracts. Flav are also marked natural antioxidants and significant indicators of biotic and abiotic stresses, critical for determining cultivation quality and enhancing Flav yield. In particular, area-based Flav (Flavarea) is related to the shortwave-blue light interaction within leaves per unit leaf area, whereas mass-based Flav (Flavmass) is useful for the quantitative assessment of Flav yield. In order to accurately estimate the contents of Flavarea and Flavmass in leaves of Ginkgo plantations, in this study, we developed an advanced bidirectional reflectance factor (BRF) spectra-based approach by reducing the effects of specular reflection and enhancing the absorption signals of Flav (in the shortwave-blue region of spectrum), using a suite of new spectral indices (SIs) (i.e., flavonoid index (FI), modified flavonoid index (mFI) and double difference index (DD)) calculated from the leaf clip equipped spectrometers-collected data. The results demonstrated that most of the SIs derived from the developed BRF spectra-based approach obtained relatively high performance for Flav estimation by alleviating adverse effects of specular reflection to different extents (CV-R2 = 0.60–0.76). In specific, DDnir434,421 selected from DD-type indices performed (CV-R2 = 0.76 for Flavarea; CV-R2 = 0.69 for Flavmass) better than other indices. These findings represent marked potentials of the developed BRF spectra-based approach for non-destructively estimating leaf Flav content, as well as improving the understanding of the mechanisms of specular effects on Flav estimations in leaves of Ginkgo plantations. Numéro de notice : A2022-744 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.020 Date de publication en ligne : 09/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101727
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 1 - 16[article]FuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
![]()
[article]
Titre : FuNet: A novel road extraction network with fusion of location data and remote sensing imagery Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Yan Xie, Auteur ; Zhan Gao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] amélioration du contraste
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] connexité (topologie)
[Termes IGN] extraction du réseau routier
[Termes IGN] fusion d'images
[Termes IGN] itération
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Road semantic segmentation is unique and difficult. Road extraction from remote sensing imagery often produce fragmented road segments leading to road network disconnection due to the occlusion of trees, buildings, shadows, cloud, etc. In this paper, we propose a novel fusion network (FuNet) with fusion of remote sensing imagery and location data, which plays an important role of location data in road connectivity reasoning. A universal iteration reinforcement (IteR) module is embedded into FuNet to enhance the ability of network learning. We designed the IteR formula to repeatedly integrate original information and prediction information and designed the reinforcement loss function to control the accuracy of road prediction output. Another contribution of this paper is the use of histogram equalization data pre-processing to enhance image contrast and improve the accuracy by nearly 1%. We take the excellent D-LinkNet as the backbone network, designing experiments based on the open dataset. The experiment result shows that our method improves over the compared advanced road extraction methods, which not only increases the accuracy of road extraction, but also improves the road topological connectivity. Numéro de notice : A2021-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010039 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.3390/ijgi10010039 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97055
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]WREP : A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops / Dong Li in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)
![]()
[article]
Titre : WREP : A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops Type de document : Article/Communication Auteurs : Dong Li, Auteur ; Tao Cheng, Auteur ; Kai Zhou, Auteur Année de publication : 2017 Article en page(s) : pp 103 - 117 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande rouge
[Termes IGN] canopée
[Termes IGN] céréales
[Termes IGN] cultures
[Termes IGN] ondelette
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance spectrale
[Termes IGN] teneur en chlorophylle des feuilles
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680–760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian.
Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons of cereal crops. The new REP extraction technique provides us a new insight for understanding the spectral changes in the red edge region in response to chlorophyll variation from leaf to canopy levels.Numéro de notice : A2017-348 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.024 En ligne : https://dx.doi.org/10.1016/j.isprsjprs.2017.04.024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85616
in ISPRS Journal of photogrammetry and remote sensing > vol 129 (July 2017) . - pp 103 - 117[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017073 DEP-EXM Revue LaSTIG Dépôt en unité Exclu du prêt 081-2017072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt