Détail de l'auteur
Auteur Emrehan Kutlug Sahin |
Documents disponibles écrits par cet auteur



Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping / Emrehan Kutlug Sahin in Geocarto international, vol 32 n° 9 (September 2017)
![]()
[article]
Titre : Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Emrehan Kutlug Sahin, Auteur ; Cengizhan Ipbuker, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2017 Article en page(s) : pp 956 - 977 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] khi carré
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] test de performance
[Termes descripteurs IGN] vulnérabilitéRésumé : (Auteur) In landslide susceptibility mapping, factor weights have been usually determined by expert judgements. A novel methodology for weighting landslide causative factors by integrating statistical feature weighting algorithms was proposed. The primary focus of this study is to investigate the effectiveness of automatic feature weighting algorithms, namely Fisher, Chi-square and Relief-F algorithms. Analytic hierarchy process (AHP) method was used as a benchmark method to compare the performances of the weighting algorithms. All weighted factors were tested using factor-weighted overlay method, and quality of these maps was assessed using overall accuracy, area under the ROC curve (AUC) and success rate curve. In addition, Wilcoxon’s signed-rank test was applied to evaluate statistical differences between both estimated overall accuracies and AUCs, respectively. Results showed that the weights determined by feature weighting methods outperformed the conventional AHP method by about 6% and this level of differences was found to be statistically significant. Numéro de notice : A2017-458 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1170892 date de publication en ligne : 11/04/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1170892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86383
in Geocarto international > vol 32 n° 9 (September 2017) . - pp 956 - 977[article]