Détail de l'auteur
Auteur Li Yan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data / Michael Kwok-Po Ng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data Type de document : Article/Communication Auteurs : Michael Kwok-Po Ng, Auteur ; Qiangqiang Yuan, Auteur ; Li Yan, Auteur ; Jing Sun, Auteur Année de publication : 2017 Article en page(s) : pp 3367 - 3381 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] détection de partie cachée
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] spectroradiométrie
[Termes IGN] tenseurRésumé : (Auteur) Missing information, such as dead pixel values and cloud effects, is very common image quality degradation problems in remote sensing. Missing information can reduce the accuracy of the subsequent image processing, in applications such as classification, unmixing, and target detection, and even the quantitative retrieval process. The main aim of this paper is to study an adaptive weighted tensor completion (AWTC) method for the recovery of remote sensing images with missing data. Our idea is to collectively make use of the spatial, spectral, and temporal information to build a new weighted tensor low-rank regularization model for recovering the missing data. In the model, the weights are determined adaptively by considering the contribution of the spatial, spectral, and temporal information in each dimension. Experimental results based on both simulated and real data sets are presented to verify that the proposed method can recover missing data, and its performance is found to be better than the other tested methods. In the simulated experiments, the peak signal-to-noise ratio is improved by more than 3 dB, compared with the original tensor completion model. In the real data experiments, the proposed AWTC model can better recover the dead line problem in Aqua Moderate Resolution Imaging Spectroradiometer band 6 and the scan-line corrector-off problem in enhanced thematic mapper plus images, with the smallest spectral distortion. Numéro de notice : A2017-476 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2670021 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2670021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86401
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3367 - 3381[article]