Détail de l'auteur
Auteur Junfeng Zhu |
Documents disponibles écrits par cet auteur



A novel orthoimage mosaic method using a weighted A∗ algorithm : Implementation and evaluation / Maoteng Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
![]()
[article]
Titre : A novel orthoimage mosaic method using a weighted A∗ algorithm : Implementation and evaluation Type de document : Article/Communication Auteurs : Maoteng Zheng, Auteur ; Xiong Xiaodong, Auteur ; Junfeng Zhu, Auteur Année de publication : 2018 Article en page(s) : pp 30 - 46 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Orthophotographie, orthoimage
[Termes descripteurs IGN] diagramme de Voronoï
[Termes descripteurs IGN] drone
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] orthophotoplan numérique
[Termes descripteurs IGN] pondérationRésumé : (Auteur) The implementation and evaluation of a weighted A∗ algorithm for orthoimage mosaic with UAV (Unmanned Aircraft Vehicle) imagery is proposed. The initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is generated based on DSM (Digital Surface Model) data; the vertices (conjunction nodes of seam-lines) of the initial network are relocated if they are on high objects (buildings, trees and other artificial structures); and the initial seam-lines are refined using the weighted A∗ algorithm based on the edge diagram and the relocated vertices. Our method was tested with three real UAV datasets. Two quantitative terms are introduced to evaluate the results of the proposed method. Preliminary results show that the method is suitable for regular and irregular aligned UAV images for most terrain types (flat or mountainous areas), and is better than the state-of-the-art method in both quality and efficiency based on the test datasets. Numéro de notice : A2018-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.02.007 date de publication en ligne : 09/03/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.02.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89588
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 30 - 46[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018043 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A new GPU bundle adjustment method for large-scale data / Zhou Shunping ; Xiong Xiaodong ; Junfeng Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
![]()
[article]
Titre : A new GPU bundle adjustment method for large-scale data Type de document : Article/Communication Auteurs : Zhou Shunping, Auteur ; Xiong Xiaodong, Auteur ; Junfeng Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 633 - 641 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] compensation par faisceaux
[Termes descripteurs IGN] gradient conjugué (algorithme)
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] processeur graphique
[Termes descripteurs IGN] traitement parallèleRésumé : (Auteur) We developed a fast and effective bundle adjustment method for large-scale datasets. The preconditioned conjugate gradient (PCG) algorithm and GPU parallel computing technology are simultaneously applied to deal with large-scale data and to accelerate the bundle adjustment process. The whole bundle adjustment process is modified to enable parallel computing. The critical optimization on parallel task assignment and GPU memory usage are specified. The proposed method was tested using 10 datasets. The traditional Levenberg Marquardt (LM) method, advanced PCG method, Wu's method and the proposed GPU parallel computing method are all compared and analyzed. Preliminary results have shown that the proposed method can process a large-scale dataset with about 13,000 images in less than three minutes on a common computer with GPU device. The efficiency of the proposed method is about the same with Wu's method while the accuracy is better. Numéro de notice : A2017-609 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.9.633 En ligne : https://doi.org/10.14358/PERS.83.9.633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86887
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 9 (September 2017) . - pp 633 - 641[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2017091 SL Revue Centre de documentation Revues en salle Disponible