Détail de l'auteur
Auteur Loïc Landrieu
Commentaire :
Researcher since 2015 in LASTIG, STRUDEL team
Autorités liées :
idHAL :
loic-landrieu
idRef :
autre URL :
ORCID :
Scopus :
Publons :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (42)



A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds / Raphaël Sulzer (2023)
![]()
Titre : A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds Type de document : Article/Communication Auteurs : Raphaël Sulzer , Auteur ; Loïc Landrieu
, Auteur ; Renaud Marlet, Auteur ; Bruno Vallet
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2023 Projets : BIOM / Vallet, Bruno Importance : 24 p. Note générale : bibliographie Langues : Anglais (eng) Résumé : (auteur) We survey and benchmark traditional and novel learning-based algorithms that address the problem of surface reconstruction from point clouds. Surface reconstruction from point clouds is particularly challenging when applied to real-world acquisitions, due to noise, outliers, non-uniform sampling and missing data. Traditionally, different handcrafted priors of the input points or the output surface have been proposed to make the problem more tractable. However, hyperparameter tuning for adjusting priors to different acquisition defects can be a tedious task. To this end, the deep learning community has recently addressed the surface reconstruction problem. In contrast to traditional approaches, deep surface reconstruction methods can learn priors directly from a training set of point clouds and corresponding true surfaces. In our survey, we detail how different handcrafted and learned priors affect the robustness of methods to defect-laden input and their capability to generate geometric and topologically accurate reconstructions. In our benchmark, we evaluate the reconstructions of several traditional and learning-based methods on the same grounds. We show that learning-based methods can generalize to unseen shape categories, but their training and test sets must share the same point cloud characteristics. We also provide the code and data to compete in our benchmark and to further stimulate the development of learning-based surface reconstruction: https://github.com/raphaelsulzer/dsr-benchmark. Numéro de notice : P2023 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Nature : Preprint DOI : 10.48550/arXiv.2301.13656 Date de publication en ligne : 31/01/2023 En ligne : https://hal.science/hal-03968453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102847 Predicting vegetation stratum occupancy from airborne LiDAR data with deep learning / Ekaterina Kalinicheva in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
![]()
![]()
[article]
Titre : Predicting vegetation stratum occupancy from airborne LiDAR data with deep learning Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu
, Auteur ; Clément Mallet
, Auteur ; Nesrine Chehata
, Auteur
Année de publication : 2022 Projets : TOSCA-FRISBEE / Vallet, Bruno Article en page(s) : n° 102863 Note générale : bibliographie
This study has been co-funded by CNES (TOSCA FRISBEE Project, convention no200769/00) and CONFETTI Project (Nouvelle Aquitaine Region project, France).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] parcelle agricole
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] strate végétaleRésumé : (auteur) We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to lower, medium, and higher cover. Our weakly-supervised training scheme allows our network to only be supervised with vegetation occupancy values aggregated over cylindrical plots containing thousands of points. Such ground truth is easier to produce than pixel-wise or point-wise annotations. Our method outperforms handcrafted and deep learning baselines in terms of precision by up to 30%, while simultaneously providing visual and interpretable predictions. We provide an open-source implementation along with a dataset of 199 agricultural plots to train and evaluate weakly supervised occupancy regression algorithms. Numéro de notice : A2022-578 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.102863 Date de publication en ligne : 19/07/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99425
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102863[article]Documents numériques
peut être téléchargé
Predicting vegetation stratum ... - pdf auteurAdobe Acrobat PDFPreface: The 2022 edition of the XXIVth ISPRS congress / Loïc Landrieu in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
![]()
[article]
Titre : Preface: The 2022 edition of the XXIVth ISPRS congress Type de document : Article/Communication Auteurs : Loïc Landrieu , Auteur ; Ewelina Rupnik
, Auteur ; Sander J. Oude Elberink, Auteur ; Clément Mallet
, Auteur ; Nicolas Paparoditis
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Vallet, Bruno Article en page(s) : 5 p. Langues : Anglais (eng) Résumé : (auteur) [introduction] We report key elements and figures related to the proceedings of the 2022 edition of the XXIVth ISPRS Congress. Despite the uncertainty and turmoil caused by the COVID-19 pandemic, the 2022 edition of the Congress is going to take place in person in Nice (France, 6-11 June 2022) and online, with a significant expected turnout: 1,600 participants have registered including 300 online participation as of April 25. The dynamic and unpredictable global health situation makes it difficult to predict participation. Numéro de notice : A2022-339 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-3-2022-1-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-3-2022-1-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100721
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-3-2022 (2022 edition) . - 5 p.[article]Multi-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
![]()
[article]
Titre : Multi-modal temporal attention models for crop mapping from satellite time series Type de document : Article/Communication Auteurs : Vivien Sainte Fare Garnot , Auteur ; Loïc Landrieu
, Auteur ; Nesrine Chehata
, Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Vallet, Bruno Article en page(s) : pp 294 - 305 Note générale : bibliographie
This work was partly supported by ASP, the French Payment Agency.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bande C
[Termes IGN] carte agricole
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] parcelle agricole
[Termes IGN] Pastis
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Optical and radar satellite time series are synergetic: optical images contain rich spectral information, while C-band radar captures useful geometrical information and is immune to cloud cover. Motivated by the recent success of temporal attention-based methods across multiple crop mapping tasks, we propose to investigate how these models can be adapted to operate on several modalities. We implement and evaluate multiple fusion schemes, including a novel approach and simple adjustments to the training procedure, significantly improving performance and efficiency with little added complexity. We show that most fusion schemes have advantages and drawbacks, making them relevant for specific settings. We then evaluate the benefit of multimodality across several tasks: parcel classification, pixel-based segmentation, and panoptic parcel segmentation. We show that by leveraging both optical and radar time series, multimodal temporal attention-based models can outmatch single-modality models in terms of performance and resilience to cloud cover. To conduct these experiments, we augment the PASTIS dataset (Garnot and Landrieu, 2021a) with spatially aligned radar image time series. The resulting dataset, PASTIS-R, constitutes the first large-scale, multimodal, and open-access satellite time series dataset with semantic and instance annotations. (Dataset available at: https://zenodo.org/record/5735646) Numéro de notice : A2022-157 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.012 Date de publication en ligne : 24/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100365
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 294 - 305[article]Voir aussiRéservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Deep surface reconstruction from point clouds with visibility information Type de document : Article/Communication Auteurs : Raphaël Sulzer , Auteur ; Loïc Landrieu
, Auteur ; Alexandre Boulch, Auteur ; Renaud Marlet, Auteur ; Bruno Vallet
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : BIOM / Vallet, Bruno Conférence : ICPR 2022, 26th International Conference on Pattern Recognition 21/08/2022 25/08/2022 Montréal Québec - Canada Proceedings IEEE Importance : 13 p. Format : 21 x 30 cm Note générale : bibliographie
https://doi.org/10.48550/arXiv.2202.01810 sur ArXivLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] visibilitéRésumé : (auteur) Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains. Numéro de notice : C2022-048 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.48550/arXiv.2202.01810 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1109/ICPR56361.2022.9956560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99811 Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation / Damien Robert (2022)
PermalinkLearning spatio-temporal representations of satellite time series for large-scale crop mapping / Vivien Sainte Fare Garnot (2022)
PermalinkPermalinkPermalinkPermalinkPermalinkCrop rotation modeling for deep learning-based parcel classification from satellite time series / Félix Quinton in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkScalable surface reconstruction with Delaunay-Graph neural networks / Raphaël Sulzer in Computer graphics forum, vol 40 n° 5 (2021)
PermalinkMulti-modal learning in photogrammetry and remote sensing / Michael Ying Yang in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
PermalinkPermalink