Détail de l'auteur
Auteur Rosmarie Blomley |
Documents disponibles écrits par cet auteur (1)



Tree species classification using within crown localization of waveform LiDAR attributes / Rosmarie Blomley in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
![]()
[article]
Titre : Tree species classification using within crown localization of waveform LiDAR attributes Type de document : Article/Communication Auteurs : Rosmarie Blomley, Auteur ; Aarne Hovi, Auteur ; Martin Weinmann, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 142 - 156 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multiéchelle
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] croissance des arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espèce végétale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt boréale
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] rotation d'objetRésumé : (Auteur) Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the robustness of the proposed method with respect to internal parameters and tree size. The results reveal, that the consideration of the crown-internal distribution of within-footprint signal characteristics captured in spin image features improves the classification results in nearly all test cases Numéro de notice : A2017-724 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88409
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 142 - 156[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt