Détail de l'auteur
Auteur Bruno Martins |
Documents disponibles écrits par cet auteur



Toponym matching through deep neural networks / Rui Santos in International journal of geographical information science IJGIS, vol 32 n° 1-2 (January - February 2018)
![]()
[article]
Titre : Toponym matching through deep neural networks Type de document : Article/Communication Auteurs : Rui Santos, Auteur ; Patricia Murrieta-Flores, Auteur ; Pavel Calado, Auteur ; Bruno Martins, Auteur Année de publication : 2018 Article en page(s) : pp 324 - 348 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes descripteurs IGN] appariement
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] recherche d'information géographique
[Termes descripteurs IGN] répertoire toponymique
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] similitude sémantique
[Termes descripteurs IGN] toponyme
[Termes descripteurs IGN] traitement de données localiséesRésumé : (Auteur) Toponym matching, i.e. pairing strings that represent the same real-world location, is a fundamental problemfor several practical applications. The current state-of-the-art relies on string similarity metrics, either specifically developed for matching place names or integrated within methods that combine multiple metrics. However, these methods all rely on common sub-strings in order to establish similarity, and they do not effectively capture the character replacements involved in toponym changes due to transliterations or to changes in language and culture over time. In this article, we present a novel matching approach, leveraging a deep neural network to classify pairs of toponyms as either matching or nonmatching. The proposed network architecture uses recurrent nodes to build representations from the sequences of bytes that correspond to the strings that are to be matched. These representations are then combined and passed to feed-forward nodes, finally leading to a classification decision. We present the results of a wide-ranging evaluation on the performance of the proposed method, using a large dataset collected from the GeoNames gazetteer. These results show that the proposed method can significantly outperform individual similarity metrics from previous studies, as well as previous methods based on supervised machine learning for combining multiple metrics. Numéro de notice : A2018-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1390119 En ligne : https://doi.org/10.1080/13658816.2017.1390119 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89179
in International journal of geographical information science IJGIS > vol 32 n° 1-2 (January - February 2018) . - pp 324 - 348[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018011 RAB Revue Centre de documentation En réserve 3L Disponible